275
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental analysis and modeling of the thermal conductivities for a novel building material providing environmental transformation

ORCID Icon, ORCID Icon &
Pages 3063-3079 | Received 31 May 2020, Accepted 10 Aug 2020, Published online: 25 Aug 2020

References

  • Akpinar, E. K., and F. Koçyigit. 2016. Thermal and mechanical properties of lightweight concretes produced with pumice and tragacanth. Journal of Adhesion Science and Technology 30:534–53. doi:10.1080/01694243.2015.1111832.
  • Alyamaç, K. E., and R. İnce. 2009. A preliminary concrete mix design for SCC with marble powders. Construction and Building Materials 23:1201–10. doi:10.1016/j.conbuildmat.2008.08.012.
  • Biçer, A., and F. A. Kar. 2019. Model for determining the effective thermal conductivity of porous heterogeneous materials. International Journal of Thermophysics 40:1–23.
  • Biçer, Y., Analysis and evaluation of thermal conductive ashes’ heat conduction combinations in different binding combinations. PhD thesis, Firat University, Elazig, 1990.
  • Buonanno, G., and A. Carotenuto. 2000. The effective thermal conductivity of packed beds of spheres for a finite contact area. Numerical Heat Transfer, Part A 37:343–57. doi:10.1080/104077800274217.
  • Collishaw, P. G., and J. R. G. Evans. 1994. An assessment of expressions for the apparent thermal conductivity of cellur materials. The Journal of Materials Science 29 (9):2261–73. doi:10.1007/BF00363413.
  • Corinaldesi, V., G. Moriconi, and T. R. Naik. 2010. Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials 24:113–17. doi:10.1016/j.conbuildmat.2009.08.013.
  • Dogu, G., K. Murtezaoglu, and T. Dogu. 1989. A dynamic method for the effective thermal conductivity of porous materials. AIChE Journal. American Institute of Chemical Engineers 35 (4):683–86. doi:10.1002/aic.690350424.
  • Duaij, J. A. A., K. El-Laithy, and R. J. Payappilly. 1997. A value engineering approach to determine quality lightweight concrete aggregate. Cost Engineering 39 (5):21–26.
  • Dul’nev, G. N. 1965. Heat transfer through solid disperse systems. Journal of Engineering Physics and Thermophysics 9 (3):399–404.
  • Esen, D. Ö., Heat transfer analysis in porous media, Postgraduate thesis, Kocaeli University, Kocaeli, 1997.
  • Freidin, C. 2005. Influence of variability of oil shale fly ash on compressive strength of cementless building compounds. Construction and Building Materials 19:127–33. doi:10.1016/j.conbuildmat.2004.05.015.
  • Fu, X., R. Viskanta, and J. P. Gore. 1998. Prediction of effective thermal conductivity of cellular ceramics. International Communications in Heat and Mass Transfer 25 (2):151–60. doi:10.1016/S0735-1933(98)00002-5.
  • Gencel, O., E. Erdogmu, M. Sutcu, and O. H. Oren. 2020. Effects of concrete waste on characteristics of structural fired clay bricks. Construction and Building Materials 255:119362. doi:10.1016/j.conbuildmat.2020.119362.
  • Gonzo, E. E. 2002. Estimating correlations for the effective thermal conductivity of granular materials. Chemical Engineering Journal 90 (3):299–302. doi:10.1016/S1385-8947(02)00121-3.
  • Güneyisi, E., M. Gesoğlu, and E. Özbay. 2009. Effects of marble powder and slag on the properties of self compacting mortars. Materials and Structures 42:813–26. doi:10.1617/s11527-008-9426-2.
  • Karasahin, M., and S. Terzi. 2007. Evaluation of marble dust in the mixture of asphaltic concrete. Construction and Building Materials 21:616–20. doi:10.1016/j.conbuildmat.2005.12.001.
  • Koçyiğit, F., Evaluation of pumice and cement mixture with tragacanth as a new building materials. PhD thesis, Firat University, Elazig, 2012.
  • Koçyiğit, F. 2020. Investigation of thermal and strength properties of a novel composite developed for insulation as building material. International Journal of Thermophysics 41: doi: 10.1007/s10765-020-2620-3.
  • Koksal, F., E. Mutluay, and O. Gencel. 2020. Characteristics of isolation mortars produced with expanded vermiculite and waste expanded polystyrene. Construction and Building Materials 236:117789. doi:10.1016/j.conbuildmat.2019.117789.
  • Koksal, F., O. Gencel, W. Brostow, and H. E. Hagg Lobland. 2012. Effect of high temperature on mechanical and physical properties of lightweight cement based refractory including expanded vermiculite. Materials Research Innovations 16 (1):7–13. doi:10.1179/1433075X11Y.0000000020.
  • Li, C., H. Yang, and F. Zok. 2013. Expanded vermiculite/paraffin composite as a solar thermal energy storage material. Journal of the American Ceramic Society 96 (9):2793–98. doi:10.1111/jace.12504.
  • Loeb, A. L. 1954. Thermal conductivity: VIII, a theory of thermal conductivity of porous materials. Journal of the American Ceramic Society 37:96–99. doi:10.1111/j.1551-2916.1954.tb20107.x.
  • Luikov, A. V., A. G. Shashkov, L. L. Vasiliev, and E. Fraiman. 1968. Thermal conductivitiy of porous systems. International Journal of Heat and Mass Transfer 11:117–40. doi:10.1016/0017-9310(68)90144-0.
  • Mathieu-Potvin, F. 2017. The method of quasiperiodic fields for thermal conduction in periodic heterogeneous media: A theoretical analysis. International Journal of Thermal Sciences 120:420–26. doi:10.1016/j.ijthermalsci.2017.05.020.
  • Maxwell, J. C. 1892. A teatise on electricity and magnetism. 3rd ed. Oxford: Clarendon Pres.
  • Okada, K., S. Matsui, T. Isobe, Y. Kameshima, and A. Nakajima. 2008. Water- retention properties of porous ceramics prepared from mixtures of allophane and vermiculite for materials to counteract heat island effects. Ceramics International 34:345–50. doi:10.1016/j.ceramint.2006.10.006.
  • Peletskii, V. E., and B. A. Shur. 2007. Experimental study of the thermal conductivity of heat insulation materials based on expanded vermiculite. Refractories and Industrial Ceramics 48 (5):356–58. doi:10.1007/s11148-007-0094-5.
  • Peng, S. W., and K. Mizukami. 1996. Mathematical modelling of moisture desorption in porous medium. International Journal of Energy Research 20 (10):923–31. doi:10.1002/(SICI)1099-114X(199610)20:10<923::AID-ER207>3.0.CO;2-Z.
  • Reddy, K. S., and P. Karthıkeyan. 2009. Estimation of effective thermal conductivity of two-phase materials using collocated parameter model. Heat Transfer Engineering 30 (12):998–1011. doi:10.1080/01457630902837533.
  • Rocha, R. P. A., and M. E. Cruz. 2001. Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance. Numerical Heat Transfer Part A 39:179–203. doi:10.1080/104077801300004267.
  • Samantray, P. K., P. Karthikeyan, and K. S. Reddy. 2006. Estimating effective thermal conductivity of two – Phase materials, Int. International Journal of Heat and Mass Transfer 49:4209–19. doi:10.1016/j.ijheatmasstransfer.2006.03.015.
  • Singh, K. J., and D. R. Chaudhary. 1998. Heat conduction and a porosity correction term for spherical and cubic particles in a simple cubic packing. Journal of Physics D: Applied Physics 31:1681–87. doi:10.1088/0022-3727/31/14/011.
  • Suvorov, S. A., and V. V. Skurikhin. 2002. High temperature heat insulating materials based on vermiculite. Refractories and Industrial Ceramics 43 (11–12):383–89. doi:10.1023/A:1023449128786.
  • Suvorov, S. A., and V. V. Skurikhin. 2003. Vermiculite – A promising material for high temperature heat insulators. Refractories and Industrial Ceramics 44 (3):186–93. doi:10.1023/A:1026312619843.
  • TS 523, Taragacanth, TSE, Ankara, 1967.
  • Ustaoglu, A., K. Kurtoglu, O. Gencel, and F. Kocyigit. 2020. Impact of a low thermal conductive lightweight concrete in building: Energy and fuel performance evaluation for different climate region. Journal of Environmental Management 268:110732. doi:10.1016/j.jenvman.2020.110732.
  • Uygunoğlu, T., İ. B. Topçu, and A. G. Çelik. 2014. Use of waste marble and recycled aggregates in selfcompacting concrete for environmental sustainability. Journal of Cleaner Production 84:691–700. doi:10.1016/j.jclepro.2014.06.019.
  • Vysnıauskas, V. V., and A. A. Zikas. 1988. Determination of thermal conductivity by the hot wire technique. Heat Transfer Soviet Research 20:137–142.
  • Wang, J., J. K. Carson, M. F. North, and D. J. Cleland. 2006. A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer 49 (17–18):3075–83. doi:10.1016/j.ijheatmasstransfer.2006.02.007.
  • Weiping, W. 2000. Taragacanth and karaya. In Handbook of hydrocolloids ed. G. O. Pihillips and P. A. Williams, 231–45. Cambridge: Woodhead Publishing Limited.
  • Wyrwal, J., A. Marynowicz, and J. Swirska. 2008. Effective thermal conductivity of porous building materials-analysis and verification. Bauphysics 30 (5):320–27. doi:10.1002/bapi.200810056.
  • Zumbrunnen, D. A., R. Viskanta, and F. P. Incropera. 1986. Heat transfer through porous solids with complex internal geometries. International Journal of Heat and Mass Transfer 29 (2):275–84. doi:10.1016/0017-9310(86)90234-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.