848
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization-, energy potential-, pyrolysis kinetics-, and non-isothermal thermogravimetric – study of raw and torrefied Moringa husk

ORCID Icon &
Received 14 Mar 2020, Accepted 14 Aug 2020, Published online: 07 Sep 2020

References

  • Abnisa, F., W. M. A. Wan Daud, and J. N. Sahu. 2011. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass & Bioenergy 35:3604–16. doi:10.1016/j.biombioe.2011.05.011.
  • Bassyouni, M., S. W. Ul Hasan, M. H. Abdel-Aziz, S. M. S. Abdel-Hamid, S. Naveed, A. Hussain, and F. N. Ani. 2014. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS. Energy Conversion and Management 88:693–99. doi:10.1016/j.enconman.2014.08.061.
  • Basu, P. 2010. Biomass gasification and pyrolysis, practical design and theory. ELSEVIER. doi:10.1016/B978-0-08-087872-0.00514-X.
  • Bianchi, O., J. D. N. Martins, R. Fiorio, R. V. B. Oliveira, and L. B. Canto. 2011. Changes in activation energy and kinetic mechanism during EVA crosslinking. Polymer Testing 30:616–24. doi:10.1016/j.polymertesting.2011.05.001.
  • Bingyan, X., Z. X. I. Guang, and Z. X. I. Guang. 1992. Kinetic study on biomass gasification.Solar Energy 49:199–204. doi:10.1016/0038-092X(92)90072-I.
  • Braun, R. L., and A. K. Burnham. 1987. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy and Fuels 1:153–61. doi:10.1021/ef00002a003.
  • Budde, P. K., R. Megha, R. Patel, and J. Pandey. 2019. Investigating effects of temperature on fuel properties of torrefied biomass for bio-energy systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41:1140–48. doi:10.1080/15567036.2018.1544992.
  • Buffi, M., A. Cappelletti, A. M. Rizzo, F. Martelli, and D. Chiaramonti. 2018. Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass & Bioenergy 115:174–85. doi:10.1016/j.biombioe.2018.04.020.
  • Cagnon, B., X. Py, A. Guillot, F. Stoeckli, and G. Chambat. 2009. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology 100:292–98. doi:10.1016/j.biortech.2008.06.009.
  • Ceylan, S., Y. Topcu, and Z. Ceylan. 2014. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Bioresource Technology 171:193–98. doi:10.1016/j.biortech.2014.08.064.
  • Channiwala, S. A., and P. P. Parikh. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–63. doi:10.1016/S0016-2361(01)00131-4.
  • Chen, D., J. Mei, H. Li, Y. Li, M. Lu, T. Ma, and Z. Ma. 2017. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresource Technology 228:62–68. doi:10.1016/j.biortech.2016.12.088.
  • Chen, W. H., and P. C. Kuo. 2010. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35:2580–86. doi:10.1016/j.energy.2010.02.054.
  • Chen, W. H., S. C. Ye, and H. K. Sheen. 2012. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresource Technology 118:195–203. doi:10.1016/j.biortech.2012.04.101.
  • Chen, Y., H. Yang, Q. Yang, H. Hao, B. Zhu, and H. Chen. 2014. Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation. Bioresource Technology 156:70–77. doi:10.1016/j.biortech.2013.12.088.
  • Demirbas, A. 2017. Tomorrow’s biofuels: Goals and hopes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (7):673–79. doi:10.1080/15567036.2016.1252815.
  • Desale, T. V. 2020. Nutritional and medicinal importance of Moringa oleifera. EC Agriculture 6 (1):01–05.
  • Doyle, C. D. 1965. Series approximations to the equation of thermogravimetric data. Nature 207 (4994):290–91. doi:10.1038/207290a0.
  • Eseltine, D. 2011. Effect of using inert and non-inert gases on the thermal degradation and fuel properties of biomass in the torrefaction and pyrolysis region. Texas A&M University.
  • Fan, J., D. Wang, and L. Kang. 2018. Development of renewable biomass energy by catalytic gasification: Syngas production for environmental management. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (24):2941–47. doi:10.1080/15567036.2018.1514435.
  • Flynn, J. H., and L. A. Wall. 1966. General trement of the therogravimetry of polymers. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry 70A:487–523. doi:10.6028/jres.070A.043.
  • Hou, S. S., W. C. Huang, and T. H. Lin. 2017. Co-combustion of fast pyrolysis bio-oil derived from coffee bean residue and diesel in an oil-fired furnace. Applied Sciences 7:1085. doi:10.3390/app7101085.
  • Isa, K. M., S. Daud, N. Hamidin, K. Ismail, S. A. Saad, and F. H. Kasim. 2011. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Industrial Crops and Products 33 (2):481–87. doi:10.1016/j.indcrop.2010.10.024.
  • Kar, Y. 2011. Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor. Bioresource Technology 102 (20):9800–05. doi:10.1016/j.biortech.2011.08.022.
  • Kaya, N., Z. Yıldız, and S. Ceylan. 2018. Preparation and characterisation of biochar from hazelnut shell and its adsorption properties for methylene blue dye. Journal of Polytechnic 0900:765–76. doi:10.2339/politeknik.386963.
  • Kumar, A. R., M. Prabhu, V. Ponnuswami, V. Lakshmanan, and A. Nithyadevi. 2014. Scientific seed production techniques in Moringa. Agricultural Reviews 35 (1):69. doi:10.5958/j.0976-0741.35.1.009.
  • Kumar, M., S. Sabbarwal, P. K. Mishra, and S. N. Upadhyay. 2019. Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Bioresource Technology 279:262–70. doi:10.1016/j.biortech.2019.01.137.
  • Li, S., S. Xu, S. Liu, C. Yang, and Q. Lu. 2004. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology 85 (8–10):1201–11. doi:10.1016/j.fuproc.2003.11.043.
  • Lu, K. M., W. J. Lee, W. H. Chen, and T. C. Lin. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Applied Energy 105:57–65. doi:10.1016/j.apenergy.2012.12.050.
  • Ma, Z., D. Chen, J. Gu, B. Bao, and Q. Zhang. 2015. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Conversion and Management 89:251–59. doi:10.1016/j.enconman.2014.09.074.
  • Manić, N., B. Janković, M. Pijović, H. Waisi, V. Dodevski, D. Stojiljković, and V. Jovanović. 2020. Apricot kernel shells pyrolysis controlled by non-isothermal simultaneous thermal analysis (STA). Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-020-09307-5.
  • Maroušek, J. 2014. Economically oriented process optimization in waste management. Environmental Science and Pollution Research 21 (12):7400–02. doi:10.1007/s11356-014-2688-z.
  • Maroušek, J., O. Strunecký, and V. Stehel. 2019. Biochar farming: Defining economically perspective applications. Clean Technologies and Environmental Policy 21 (7):1389–95. doi:10.1007/s10098-019-01728-7.
  • Maroušek, J., S. Itoh, O. Higa, Y. Kondo, M. Ueno, R. Suwa, Y. Komiya, J. Tominaga, and Y. Kawamitsu. 2012. The use of underwater high-voltage discharges to improve the efficiency of Jatropha curcas L. biodiesel production. Biotechnology and Applied Biochemistry 59 (6):451–56. doi:10.1002/bab.1045.
  • Meng, J., J. Park, D. Tilotta, and S. Park. 2012. The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresource Technology 111:439–46. doi:10.1016/j.biortech.2012.01.159.
  • Miura, K., and T. Maki. 1998. A simple method for estimating f(E) and ko(E) in the distributed activation energy model. Energy & Fuels:864–69. doi:10.1021/ef970212q.
  • Müsellim, E., M. H. Tahir, M. S. Ahmad, and S. Ceylan. 2018. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Applied Thermal Engineering 137:54–61. doi:10.1016/j.applthermaleng.2018.03.050.
  • Pitt, G. 1962. The kinetics of the evolution of the volatile products from coal. Fuel 41(3): 267–274.
  • Poddar, S., M. Kamruzzaman, S. M. A. Sujan, M. Hossain, M. S. Jamal, M. A. Gafur, and M. Khanam. 2014. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 131:43–48. doi:10.1016/j.fuel.2014.04.061.
  • Polat, S., and P. Sayan. 2020. Assessment of the thermal pyrolysis characteristics and kinetic parameters of spent coffee waste: A TGA-MS study. Energy Sources Part A Recovery Utilization and Environmental Effects 1–14. doi:10.1080/15567036.2020.1736693.
  • Poletto, M., A. J. Zattera, and R. M. C. Santana. 2012. Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology 126:7–12. doi:10.1016/j.biortech.2012.08.133.
  • Quan, C., S. Xu, Y. An, and X. Liu. 2014. Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor. Journal of Thermal Analysis and Calorimetry 117 (2):817–23. doi:10.1007/s10973-014-3774-7.
  • Radovich, T. 2010. Farm and Forestry Production and Marketing profile for Moringa. Specialty Crops for Pacific Island Agroforestry.
  • Ren, S., H. Lei, L. Wang, Q. Bu, S. Chen, and J. Wu. 2013a. Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosystems Engineering 116 (4):420–26. doi:10.1016/j.biosystemseng.2013.10.003.
  • Ren, S., H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, J. Julson, and R. Ruan. 2013b. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology 135:659–64. doi:10.1016/j.biortech.2012.06.091.
  • Repellin, V., A. Govin, M. Rolland, and R. Guyonnet. 2010. Energy requirement for fine grinding of torrefied wood. Biomass & Bioenergy 34 (7):923–30. doi:10.1016/j.biombioe.2010.01.039.
  • Rogers, J. G., and J. G. Brammer. 2012. Estimation of the production cost of fast pyrolysis bio-oil. Biomass & Bioenergy 36:208–17. doi:10.1016/j.biombioe.2011.10.028.
  • Salaheldeen, M., M. K. Aroua, A. A. Mariod, S. F. Cheng, and M. A. Abdelrahman. 2014. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Industrial Crops and Products 61:49–61. doi:10.1016/j.indcrop.2014.06.027.
  • SenthilKumar, P., S. Ramalingam, V. Sathyaselvabala, S. D. Kirupha, and S. Sivanesan. 2011. Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination 266 (1–3):63–71. doi:10.1016/j.desal.2010.08.003.
  • Sharma, A., and B. Mohanty. 2020. Non‑isothermal TG/DTG‑ FTIR kinetic study for devolatilization of Dalbergia sissoo wood under nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-020-09978-0.
  • Shirani, Z., C. Santhosh, J. Iqbal, and A. Bhatnagar. 2018. Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants. Journal of Environmental Management 35:95–106. doi:10.1016/j.biombioe.2011.05.011.
  • Singh, P., R. K. Singh, P. V. Gokul, S. U. Hasan, and A. N. Sawarkar. 2020. Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources Part A Recovery Utilization and Environmental Effects 1–12. doi:10.1080/15567036.2020.1736215.
  • Singh, R. N., D. K. Vyas, N. S. L. Srivastava, and M. Narra. 2008. SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renewable Energy 33 (8):1868–73. doi:10.1016/j.renene.2007.10.007.
  • Singh, S., J. P. Chakraborty, and M. K. Mondal. 2020. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel 259: 116263. doi:10.1016/j.fuel.2019.116263
  • Singh, Y., A. Singla, A. Upadhyay, and A. K. Singh. 2017. Sustainability of Moringa-oil–based biodiesel blended lubricant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:313–19. doi:10.1080/15567036.2016.1179360.
  • Sowmya Dhanalakshmi, C., and P. Madhu. 2019. Utilization possibilities of Albizia amara as a source of biomass energy for bio-oil in pyrolysis process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (15):1908–19. doi:10.1080/15567036.2018.1549168.
  • Szargut, J. 2005. Exergy method: Technical and ecological applications. UK and USA: WIT press.
  • Tumuluru, J. S., S. Sokhansanji, R. Hess, C. T. Wright, and R. D. Boardman. 2011. Ehsan. Industrial Biotechnology. 7:384–401. doi:10.1089/ind.2011.0014.
  • Uslu, A., A. P. C. Faaij, and P. C. A. Bergman. 2008. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33:1206–23. doi:10.1016/j.energy.2008.03.007.
  • Volli, V., and R. K. Singh. 2012. Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–85. doi:10.1016/j.fuel.2012.01.016.
  • Yuan, T., A. Tahmasebi, and J. Yu. 2015. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology 175:333–41. doi:10.1016/j.biortech.2014.10.108.
  • Zheng, Y., L. Tao, X. Yang, Y. Huang, C. Liu, J. Gu, and Z. Zheng. 2017. Torrefaction temperature. BioResources 12:3425–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.