202
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective optimization of performance and emissions characteristics of a variable compression ratio diesel engine running with biogas-diesel fuel using response surface techniques

, ORCID Icon, ORCID Icon, , &
Received 01 Oct 2019, Accepted 16 Aug 2020, Published online: 02 Sep 2020

References

  • Anantha Lakshmipathi, R. Deepanraj, S. Rajakumar, B. Deepanraj, L. Paradeshi. 2017b. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation. Thermal Science. 21(2017):435–41. doi:10.2298/TSCI17S2435A.
  • Baranitharan, P. 2020. Fuzzy prediction and RSM optimization of CI engine performance analysis: Aegle marmelos non-edible seed cake pyrolysis oil as a diesel alternative. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, doi:10.1080/15567036.2020.1773971.
  • Barik, D., and S. Murugan. 2014a. Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas-diesel in dual fuel mode. Energy 72:760–71. doi:10.1016/j.energy.2014.05.106.
  • Barik, D., and S. Murugan. 2014b. Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine. The Journal Energy Conversion and Management 84:217–26. doi:10.1016/j.enconman.2014.04.042.
  • Barik, D., and S. Murugan. 2016. Effects of diethyl ether (DEE) injection on combustion performance and emission characteristics of Karanja methyl ester (KME)–biogas fueled dual fuel diesel engine. Fuel 164:286–96. doi:10.1016/j.fuel.2015.09.094.
  • Billa, K. K., G. R. K. Sastry, and M. Deb. 2020. Characterization of emission-performance paradigm of a DI-CI engine using artificial intelligent based multi objective response surface methodology model fueled with diesel-biodiesel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, doi:10.1080/15567036.2019.1704312.
  • Bora, B. J., and U. K. Saha. 2015. Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels. Renewable Energy 81:490–98. doi:10.1016/j.renene.2015.03.019.
  • Bora, B. J., and U. K. Saha. 2016. Experimental evaluation of a rice bran biodiesel–biogas run dual fuel diesel engine at varying compression ratios. Renewable Energy 87:782–90. doi:10.1016/j.renene.2015.11.002.
  • Bora, B. J., U. K. Saha, and S. Chatterjee. 2014. Veer V Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. The Journal Energy Conversion and Management 87:1000–09. doi:10.1016/j.enconman.2014.07.080.
  • Colban, W. F., P. C. Miles, and S. Oh, On the cyclic variability and sources of unburned hydrocarbon emissions in low temperature diesel combustion systems. SAE Technical Paper (2007) 768–80. doi.10.4271/2007-01-1837
  • Deepanraj, B., M. Srinivas, N. Arun, G. Sankaranarayanan, and P. Abdul Salam. 2017a. Comparison of Jatropha and Karanja biofuels on their combustion characteristics. International Journal of Green Energy 14 (15):1231–37. doi:10.1080/15435075.2017.1328420.
  • Deepanraj, B., N. Senthilkumar, J. Ranjitha, and S. Jayaraj. 2020. Chyuan Ong HwaiBiogas from food waste through anaerobic digestion: Optimization with response surface methodology. Biomass Conversion and Biorefinery, doi:10.1007/s13399-020-00646-9.
  • Deepanraj, B., P. Lawrence, R. Sivashankar, and V. Sivasubramanian. 2016. Analysis of preheated crude palm oil, palm oil methyl ester and its blends as fuel in diesel engine. International Journal of Ambient Energy 37 (5):495–500. doi:10.1080/01430750.2015.1004106.
  • Deepanraj. B., M. Srinivas, N. Arun, and G. Sankaranarayanan. 2017. Abdul Salam P. Comparison of jatropha and karanja biofuels on their combustion characteristics. International Journal of Green Energy 14 (15):1231–1237 doi:10.1080/15435075.2017.1328420
  • Duc, P. M., and K. Wattanavichien. 2007. Study on biogas premixed charge diesel dual fuelled engine. The Journal Energy Conversion and Management 48:2286–308. doi:10.1016/j.enconman.2007.03.020.
  • Gnanamoorthi, V., and G. Devaradjane. 2015. Effect of compression ratio on the performance, combustion and emission of di diesel engine fueled with ethanol e Diesel blend. The Journal of the Energy Institute 88:19–26. doi:10.1016/j.joei.2014.06.001.
  • Goga, G., B. S. Chauhan, S. K. Mahla, D. Amit., and H. M. Cho. 2019. Combined impact of varying biogas mass flow rate and rice bran methyl esters blended with diesel on a dual fuel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1623948.
  • Han, M., D. N. Assanis, and S. V. Bohac. 2009. Sources of hydrocarbon emissions from low-temperature premixed compression ignition combustion from a common rail direct injection diesel engine. Combustion Science and Technology 181:496–517. doi:10.1080/00102200802530066.
  • Hasni, K., Z. Ilham, S. Dharma, and M. Varman. 2017. Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. The Journal Energy Conversion and Management 149:392–400. doi:10.1016/j.enconman.2017.07.037.
  • HassanPour, A., A. S. M. Safieddin, and M. J. Sheikhdavoodi. 2018. Multi-objective optimization of diesel engine performance and emissions fueled with diesel-biodiesel-fusel oil blends using response surface method. Environmental Science and Pollution Research International 25:429–39. doi:10.1007/s11356-018-3459-z.
  • Ibrahim, M. M., J. V. Narasimhan, and A. Ramesh. 2015. Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels. Energy 89:990–1000. doi:10.1016/j.energy.2015.06.033.
  • Jindal, M., P. Rosha, S. K. Mahla, and A. Dhir. 2015. Experimental investigation of performance and emissions characteristics of waste cooking oil biodiesel and n-butanol blends in a compression ignition engine. RSC Advances 5 (2015):33863–68. doi:10.1039/C4RA14431G.
  • Liu, F., H. Guo, G. J. Smallwood, and Ö. L. Gülder. 2001. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combustion Flame 125:778–87. doi:10.1016/S0010-2180(00)00241-8.
  • Liu, J., F. Yang, H. Wang, M. Ouyang, S. Hao, et al. 2013. Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing. Applied Energy 110:201–06. doi:10.1016/j.apenergy.2013.03.024.
  • Mahla, S. K., A. Dhir, K. J. Gill, H. M. Cho, H. C. Lim, and B. S. Chauhan. 2018. Influence of EGR on the simultaneous reduction of NOx-Smoke emissions trade-off under CNG-Biodiesel dual fuel engine. Energy 152:303–12. doi:10.1016/j.energy.2018.03.072.
  • Mahla, S. K., K. S. Parmar, J. Singh, A. Dhir, S. S. Sandhu, and B. S. Chauhan. 2019a. Trend and time series analysis by ARIMA model to predict the emissions and performance characteristics of biogas fuelled compression ignition engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567096.2019.1670286.
  • Mahla, S. K., V. Singla, S. S. Sandhu, and A. Dhir. 2018a. Studies on biogas-fuelled compression ignition engine under dual fuel mode. Environmental Science and Pollution Research 25:9722–29. doi:10.1007/s11356-018-1247-4.
  • Makareviciene, V., E. Sendzikiene, S. Pukalskas, A. Rimkus, R. Vegneris. 2013. Performance and emission characteristics of biogas used in diesel engine operation. The Journal Energy Conversion and Management 75:224–33. doi:10.1016/j.enconman.2013.06.012.
  • Mirbagheri, S. A., S. M. Safieddin Ardebili, and M. K. D. Kiani. 2020. Modeling of the engine performance and exhaust emissions characteristics of a single cylinder diesel using nano-biochar added into ethanol-biodiesel-diesel blends. Fuel 278. doi:10.1016/j.fuel.2020.118238.
  • Mustafi, N. N., R. R. Raine, and S. Verhelst. 2013. Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel 109. doi:669–678.doi.10.1016/j.fuel.2013.03.007.
  • Najafi, G., B. Ghobadian, T. Yusaf, S. M. Safieddin Ardebili, R. Mamat. 2015. Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology. Energy 90:1815–29. doi:10.1016/j.energy.2015.07.004.
  • Namasivayam, A. M., T. Korakianitis, R. J. Crookes, K. D. H. Bob-Manuel, J. Olsen. 2010. Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines. Applied Energy 87:769–78. doi:10.1016/j.apenergy.2009.09.014.
  • Nayak, S. K., and P. C. Mishra. 2016. Emissions from sawdust biomass and diesel blends fuels. Energy Sources, Part A Recover Util Environmental Effects 38:2050–57. doi:10.1080/15567036.2014.999177.
  • Palash, S. M., H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. Rizwanul Fattah, A. Sanjid. 2015. Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh. The Journal Energy Conversion and Management 91:149–57. doi:10.1016/j.enconman.2014.12.009.
  • Papagiannakis, R. G., C. D. Rakopoulos, D. T. Hountalas, and D. C. Rakopoulos. 2010. Rakopoulos DC Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions. Fuel 89 (7):1397–406. doi:10.1016/j.fuel.2009.11.001.
  • Paramasivam, B., R. Kasimani, and S. Rajamohan. 2018. Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: Study on performance and emission characteristics of CI engine fueled with Aegle marmelos pyrolysis oil-blends. Environmental Science and Pollution Research 25:33806–19. doi:10.1007/s11356-018-3319-x.
  • Porpatham E, Ramesh A, and Nagalingam B. 2012. Effect of compression ratio on the performance and combustion of a biogas fuelled spark ignition engine. Fuel 95(1):247–256.
  • Raheman, H., and S. V. Ghadge. 2008. Performance of diesel engine with biodiesel at varying compression ratio and ignition timing. Fuel 87:2659–66. doi:doi.10.1016/j.fuel.2008.03.006.
  • Rahman, K. A., and A. Ramesh. 2019. Studies on the effects of methane fraction and injection strategies in a biogas diesel common rail dual fuel engine. Fuel 236:147–65. doi:10.1016/j.fuel.2018.08.091.
  • Ramadhas, A. S., S. Jayaraj, and C. Muraleedharan. 2008. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas. Renewable Energy 33 (2008):2077–83. doi:10.1016/j.renene.2007.11.013.
  • Safieddin Ardebili, S. M., A. Taghipoor, H. Solmaz, and M. Mostafaei. 2020. The effects of nano-biochar on the performance and emissions of a diesel engine fueled with fuel oil-diesel fuel. Fuel 268. doi:doi.10.1016/j.fuel.2020.117356.
  • Safieddin Ardebili, S. M., H. Solmaz, and M. Mostafaei. 2019. Optimization of fusel oil – Gasoline blend ratio to enhance the performance and reduce emissions. Applied Thermal Engineering 148:1334–45. doi:10.1016/j.applthermaleng.2018.12.005.
  • Safieddin Ardebili, S. M., T. T. Hashjin, B. Ghobadian. 2015. Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM). Green Processing and Synthesis 4:259–67. doi:10.1515/gps-2015-0029.
  • Sahoo, B. B. (2011) Clean development mechanism potential of compression ignition diesel engines using gaseous fuels in dual fuel mode, PhD. Thesis.gyan.iitg.ernet.in/handle/123456789/118
  • Samiran NA, Jafaar MNM, NgJH, Lam SS, Chong CT. 2016. Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews 60:1047–1062 doi:10.1016/j.rser.2016.04.049
  • Sharma, A., Y. Singh, S. K. Gupta, and N. K. Singh. 2019. Application of response surface methodology to optimize diesel engine parameters fuelled with pongamia biodiesel/diesel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, doi:10.1080/15567036.2019.1623949.
  • Smith, O. I. 1981. Fundamentals of soot formation in flames with application to diesel engine particulate emissions. Progress in Energy and Combustion Science 7:275–91. doi:doi.10.1016/0360-1285(81)90002-2.
  • Solmaz, H., S. M. Safieddin Ardebili, F. Aksoy, A. Calam, E. Yilmaz, and M. Arslan. 2020. Optimization of the operating conditions of a beta-type rhombic drive striling engine by using response surface method. Energy 198. doi:10.1016/j.energy.2020.117377.
  • Tag X, X DX, Khalife E, et al. 2017. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog Energy Combust Sci 59 (2017): 32–78. doi:10.1016/j.pecs.2016.10.001
  • Verma, S., L. M. Das, and S. C. Kaushik. 2017. Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. The Journal Energy Conversion and Management 138:346–59. doi:10.1016/j.enconman.2017.01.066.
  • Witek-Krowiak. A., K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda. 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol 160:150–60. doi:10.1016/j.biortech.2014.01.021
  • Yoon, S. H., and C. S. Lee. 2011. Experimental investigation on the combustion and exhaust emission characteristics of biogas–biodiesel dual-fuel combustion in a CI engine. Fuel Processing Technology 92:992–1000. doi:10.1016/j.fuproc.2010.12.021.
  • Yusri, I. M., A. P. P. A. Majeed, R. Mamat, M. F. Ghazali, O. I. Awad, W. H. Azmi. 2018. A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel. Renewable and Sustainable Energy Reviews 90:665–86. doi:10.1016/j.rser.2018.03.095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.