177
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Miombo species used by rural communities as fuelwood in Northern Mozambique

ORCID Icon, ORCID Icon & ORCID Icon
Received 18 Jul 2020, Accepted 21 Aug 2020, Published online: 01 Sep 2020

References

  • Abbot, P., J. Lowore, C. Khofi, and M. Werren. 1997. Defining firewood quality: A comparison of quantitative and rapid appraisal techniques to evaluate firewood species from a Southern African Savanna. Biomass & Bioenergy 12:429–37. doi:10.1016/S0961-9534(96)00084-0.
  • Afonso C. M. .I., Gonçalves T. A. P., Muñiz G. I. B., Matos J. L. M., Nisgoski S. 2014. Mozambique’s charcoals—energetic properties of nine native species. Eur J Wood Wood Prod 73:131–133. https://doi.org/10.1007/s00107-014-0855-zMozambique’s charcoals—energetic properties of nine native species. European Journal of Wood and Wood Products 73:131–33. doi:10.1007/s00107-014-0855-z.
  • Assis, M. R., L. Brancheriau, A. Napoli, and P. F. Trugilho. 2016. Factors affecting the mechanics of carbonized wood: Literature review. Wood Science and Technology 50:519–36. doi:10.1007/s00226-016-0812-6.
  • Assossiação Brasileira de Normas Técnicas. 2003. NBR 11941: Madeira - determinação da densidade básica, ABNT, Rio de Janeiro, 6.
  • Assossiação Brasileira de Normas Técnicas. 2010. NBR 14853: Madeira – Determinação do material solúvel em etanol-tolueno e em diclorometano, ABNT, Rio de Janeiro, 3.
  • ASTM. 2011. Standard practice for preparation of biomass for compositional analysis. Annual B ASTM Standard 01: 6–9. doi:10.1520/E1757-01R07.2
  • ASTM. 2013. ASTM. Chemical Analysis of Wood Charcoal 1: i:1–2. doi:10.1520/D1762-84R13.2
  • ASTM E711-87 2004. Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. Annual B ASTM Standard 87: 1–8. doi:10.1520/E0711-87R04.2
  • Baumert, S., A. C. Luz, J. Fisher, F. Vollmer, C. M. Ryan, G. Patenaude, P. Zorrilla-Miras, L. Artur, I. Nhantumbo, D. Macqueen, et al. 2016. Charcoal supply chains from Mabalane to Maputo: Who benefits? Energy for Sustainable Development 33:129–38. doi:10.1016/j.esd.2016.06.003.
  • Cuvilas, C., I. Lhate, R. Jirjis, and N. Terziev. 2014. The characterization of wood species from mozambique as a fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36:851–57. doi:10.1080/15567036.2011.582601.
  • de Paula Protásio, T., M. V. Scatolino, D. A. ACC, A. F. C. F. de Oliveira, I. C. R. de Figueiredo, M. R. de Assis, P. F. Trugilho. 2019. Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior eucalyptus firewood. BioEnergy Research 12:626–41. doi:10.1007/s12155-019-10004-x.
  • Fernandes ADOSM. 2014. Análise da produção de madeira para o fornecimento sustentável de energia doméstica aos centros urbanos de Moçambique. Doutoral Thesis. Universidade Federal Do Paraná. Curitiba. https://www.acervodigital.ufpr.br/bitstream/handle/1884/36055/R - T - AGNELO DOS MILAGRES FERNANDES.pdf?sequence=1&isAllowed=y Accessed 28 Nov 2019
  • Food and Agriculture Organization. 2019. FAOSTAT-forestry database. Accessed October 10, 2019. http://www.fao.org/faostat/en/#compare.
  • García, R., C. Pizarro, A. G. Lavín, and J. L. Bueno. 2014. Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel 117:1139–47. doi:10.1016/j.fuel.2013.08.049.
  • Goldschmid, O. 1971. Utraviolet spectra. In Lignins: Occurrence, formation, structure and reactions.occurrence, formation, structure and reactions, ed. K. V. Sarkanen, C. H. Ludwig, and W. Jhon, 241–98. New York: Wiley-Interscience, New York.
  • Gomide, J. L., and B. J. Demuner. 1986. Determinação do teor de lignina em material lenhoso método klason modificado. O Pap 47:36–38.
  • Guo, X. J., S. R. Wang, K. G. Wang, Q. Liu, Z.-Y. Luo. 2010. Influence of the extractives on mechanism of biomass pyrolysis. Journal of Fuel Chemistry and Technology 38:42–46. doi:10.1016/s1872-5813(10)60019-9.
  • IEA 2019. World energy balances: An overview. Journal of Chemical Information and Modeling 53: 1689–99. doi:10.1017/CBO9781107415324.004
  • Köppen, W. 1936. Das geographisca System der Klimate. In Handbuch der Klimatologie, ed. W. Koppen and G. Geiger, 1–44. Gebruder Borntraeger: Stuttgart.
  • Magdziarz, A., and S. Werle. 2014. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Management 34:174–79. doi:10.1016/j.wasman.2013.10.033.
  • Manjate, M. J., and J. Z. Massuque. 2019. Composição florística e estrutura da vegetação da savana de Miombo em dois ambientes distintos no Distrito de Sanga, Norte de Moçambique. Rev Ibero-Americana Ciências Ambient 10:77–89. doi:10.6008/cbpc2179-6858.2019.001.0007.
  • Menéndez, A., and M. D. Curt. 2013. Energy and socio-economic profile of a small rural community in the highlands of central Tanzania: A case study. Energy for Sustainable Development 17:201–09. doi:10.1016/j.esd.2012.12.002.
  • Pereira, B. L. C., A. D. C. O. Carneiro, A. M. M. L. Carvalho, J. L. Colodette, A. C. Oliveira, M. P. F. Fontes. 2013. Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. BioResources 8:4574–92. doi:10.15376/biores.8.3.4574-4592.
  • Poletto, M., A. J. Zattera, M. M. C. Forte, and R. M. C. Santana. 2012. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology 109:148–53. doi:10.1016/j.biortech.2011.11.122.
  • Ramos, D. C., A. de Cassia Oliveira Carneiro, M. Tangstad, R. Saadieh, B. L. C. Pereira. 2019. Quality of wood and charcoal from eucalyptus clones for metallurgical use. Floresta E Ambient 26. doi:10.1590/2179-8087.043518.
  • República de Moçambique. 2013. ESTRATÉGIA DE CONSERVAÇÃO E USO SUSTENTÁVEL DA ENERGIA DA BIOMASSA Para o período, 2014-2025. Ministério da Energia. Maputo. 138  http://www.biofund.org.mz/wp-content/uploads/2019/01/1548670181-2015%2010%2008%20ECUSEB%20-%20Estrategia%20de%20Conservacao%20e%20Uso%20Sustentavel%20da%20Energia%20de%20Biomassa%202.pdf Acessed 28 Nov 2019.
  • República De Moçambique (1999) Lei de Floresta e Fauna Bravia-Lei nr. 10/99. 30
  • Sher, F., S. Z. Iqbal, H. Liu, M. Imran, C. E. Snape. 2020. Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management 203:112266. doi:10.1016/j.enconman.2019.112266.
  • Skevas, T., S. M. Swinton, and N. J. Hayden. 2014. What type of landowner would supply marginal land for energy crops? Biomass & Bioenergy 67:252–59. doi:10.1016/j.biombioe.2014.05.011.
  • Soares, V. C., M. L. Bianchi, P. F. Trugilho, A. J. Pereira, J. Höfler. 2014. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore 38 (3):543–49. doi:10.1590/S0100-67622014000300017.
  • Sudhakar, K., and M. Premalatha. 2015. Characterization of micro algal biomass through FTIR/TGA /CHN analysis: Application to Scenedesmus sp. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37:2330–37. doi:10.1080/15567036.2013.825661.
  • Tenorio, C., and R. Moya. 2013. Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica. Thermochimica Acta 563:12–21. doi:10.1016/j.tca.2013.04.005.
  • Ul Hai, I., F. Sher, A. Yaqoob, and H. Liu. 2019. Assessment of biomass energy potential for SRC willow woodchips in a pilot scale bubbling fluidized bed gasifier. Fuel 258:116143. doi:10.1016/j.fuel.2019.116143.
  • Wang, C. A., Y. Liu, X. Zhang, and D. Che. 2011. A study on coal properties and combustion characteristics of blended coals in northwestern China. Energy and Fuels 25:3634–45. doi:10.1021/ef200686d.
  • Wang, S., G. Dai, H. Yang, and Z. Luo. 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 62:33–86. doi:10.1016/j.pecs.2017.05.004.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yang, H., R. Yan, H. Chen, C. Zheng, D. H. Lee, D. T. Liang. 2006. In-depth investigation of biomass pyrolysis based on three major components:  Hemicellulose, cellulose and lignin. Energy and Fuels 20 (1):388–93. doi:10.1021/ef0580117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.