508
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Performance enhancement of photovoltaic module by integrating eutectic inorganic phase change material

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 09 Oct 2019, Accepted 15 Aug 2020, Published online: 15 Sep 2020

References

  • Ali, H. M. 2020. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems–A comprehensive review. Solar Energy 197:163–98. doi:10.1016/j.solener.2019.11.075.
  • Arici, M., F. Bilgin, S. Nižetić, and A. M. Papadopoulos. 2018. Phase change material based cooling of photovoltaic panel: A simplified numerical model for the optimization of the phase change material layer and general economic evaluation. Journal of Cleaner Production 189:738–45. doi:10.1016/j.jclepro.2018.04.057.
  • DiGuilio, R. M., and A. S. Teja. 1992. A rough hard-sphere model for the thermal conductivity of molten salts. International Journal of Thermophysics 13 (5):855–71. doi:10.1007/BF00503912.
  • Hachem, F., B. Abdulhay, M. Ramadan, H. E. Hage, M. G. El Rab, and M. Khaled. 2017. Improving the performance of photovoltaic cells using pure and combined phase change materials: Experiments and transient energy balance. Renewable Energy 107:567–75. doi:10.1016/j.renene.2017.02.032.
  • Hasan, A., S. J. McCormack, M. J. Huang, and B. Norton. 2010. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Solar Energy 84 (9):1601–12. doi:10.1016/j.solener.2010.06.010.
  • Hasan, A., S. J. McCormack, M. J. Huang, and B. Norton. 2014a. Characterization of phase change materials for thermal control of photovoltaics using differential scanning calorimetry and temperature history method. Energy Conversion and Management 81:322–29. doi:10.1016/j.enconman.2014.02.042.
  • Hasan, A., S. J. McCormack, M. J. Huang, and B. Norton. 2014b. Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) system through temperature regulation and performance enhancement of photovoltaics. Energies 7 (3):1318–31. doi:10.3390/en7031318.
  • Hasan, A., S. J. McCormack, M. J. Huang, J. Sarwar, and B. Norton. 2015. Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Solar Energy 115:264–76. doi:10.1016/j.solener.2015.02.003.
  • JianShe, H., Y. Chao, X. Zhao, Z. Jiao, and J. Du. 2018. Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2018.1496199.
  • Karthick, A., K. Kalidasa Murugavel, K. Sudalaiyandi, and A. Muthu Manokar. 2019. Building integrated photovoltaic modules and the integration of phase change materials for equatorial applications. Building Services Engineering Research & Technology. doi:10.1177/0143624419883363.
  • Karthick, A., K. Kalidasa Murugavel, and P. Ramanan. 2018a. Performance enhancement of a building-integrated photovoltaic module using phase change material. Energy 142:803–12. doi:10.1016/j.energy.2017.10.090.
  • Karthick, A., K. K. Murugavel, A. Ghosh, K. Sudhakar, and P. Ramanan. 2020a. Investigation of a binary eutectic mixture of phase change material for building integrated photovoltaic (BIPV) system. Solar Energy Materials and Solar Cells 207:110360. doi:10.1016/j.solmat.2019.110360.
  • Karthick, A., K. K. Murugavel, and L. Kalaivani. 2018b. Performance analysis of semitransparent photovoltaic module for skylights. Energy 162:798–812. doi:10.1016/j.energy.2018.08.043.
  • Karthick, A., P. Ramanan, A. Ghosh, B. Stalin, R. Vignesh Kumar, and I. Baranilingesan. 2020b. Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia-Pacific Journal of Chemical Engineering e2480. doi:10.1002/apj.2480.
  • Khanna, S., K. S. Reddy, and T. K. Mallick. 2017. Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions. Energy 133:887–99. doi:10.1016/j.energy.2017.05.150.
  • Klugmann-Radziemska, E., and P. Wcisło-Kucharek. 2017. Photovoltaic module temperature stabilization with the use of phase change materials. Solar Energy 150:538–45. doi:10.1016/j.solener.2017.05.016.
  • Ling, Z., J. Liu, Q. Wang, W. Lin, X. Fang, and Z. Zhang. 2017. MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity. Solar Energy Materials and Solar Cells 172:195–201. doi:10.1016/j.solmat.2017.07.019.
  • Liu, Y., and Y. Yang. 2017a. Preparation and thermal properties of Na2CO310H2O-Na2HPO412H2O eutectic hydrate salt as a novel phase change material for energy storage. Applied Thermal Engineering 112:606–09. doi:10.1016/j.applthermaleng.2016.10.146.
  • Liu, Y., and Y. Yang. 2017b. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Solar Energy Materials & Solar Cells 160:18–25. doi:10.1016/j.solmat.2016.09.050.
  • Manoj Kumar, P., K. Mylsamy, and P. T. Saravanakumar. 2019. Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1607942.
  • Nada, S. A., D. H. El-Nagar, and H. M. S. Hussein. 2018. Improving the thermal regulation and efficiency enhancement of PCM Integrated PV modules using nano particles. Energy Conversion and Management 166:735–43. doi:10.1016/j.enconman.2018.04.035.
  • Nizetic, S., M. Arıcı, F. Bilgin, and F. Grubisic-Cabo. 2018. Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics. Journal of Cleaner Production 170:1006–16. doi:10.1016/j.jclepro.2017.09.164.
  • Park, J., T. Kim, and S. B. Leigh. 2014. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Solar Energy 105:561–674. doi:10.1016/j.solener.2014.04.020.
  • Parkunam, N., L. Pandiyan, G. Navaneethakrishnan, S. Arul, and V. Vijayan. 2019. Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1588429.
  • Patricia, R., V. J. Ferreira, A. M. Lopez-Sabiron, and F. German. 2016. Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials. Energy 101:174–89. doi:10.1016/j.energy.2016.01.101.
  • Ramanan, P., K. Kalidasa Murugavel, and A. Karthick. 2019. Performance analysis and energy metrics of grid-connected photovoltaic systems. Energy for Sustainable Development 52:104–15. doi:10.1016/j.esd.2019.08.001.
  • Ramanan, P., K. Kalidasa Murugavel, A. Karthick, and K. Sudhakar. 2020. Performance evaluation of building-integrated photovoltaic systems for residential buildings in Southern India. Building Services Engineering Research and Technology. 41(4):492–506. doi:10.1177/0143624419881740.
  • Reddy, K. P., M. V. N. Gupta, S. Nundy, A. Karthick, and A. Ghosh. 2020. Status of BIPV and BAPV system for less energy-hungry building in India—A review. Applied Sciences 10 (7):2337. doi:10.3390/app10072337.
  • Sainthiya, H., and N. S. Beniwal. 2019. Comparative analysis of electrical performance parameters under combined water cooling technique of photovoltaic module: An experimental investigation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1604894.
  • Skoplaki, E., and J. A. Palyvos. 2009. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy 83 (5):614–24. doi:10.1016/j.solener.2008.10.008.
  • Sun, V., A. Asanakham, T. Deethayat, and T. Kiatsiriroat. 2018a. Study on phase change material and its appropriate thickness for controlling solar cell module temperature. International Journal of Ambient Energy. doi:10.1080/01430750.2018.1443500.
  • Sun, X., K. O. Lee, M. A. Medina, Y. Chu, and L. Chuanchang. 2018b. Melting temperature and enthalpy variations of phase change materials (PCMs): A differential scanning calorimetry (DSC) analysis. Phase Transitions 91 (6):667–80. doi:10.1080/01411594.2018.1469019.
  • Xin, W., J. Fang, W. Jiang, L. Ping, L. Na, F. Yanhan, and L. Wang. 2019. Preparation and modification of novel phase change material Na2SO4·10H2O-Na2HPO4·12H2O binary eutectic hydrate salt. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–12. doi:10.1080/15567036.2019.1646843.
  • Zheng, T., Z. Chen, R. Sun, J. Peng, C. Wang, and J. Ning. 2019. Research on optimization and performance of Na2HPO4· 12H2O mixture system combining fuzzy optimization model based on analytic hierarchy process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (3):324–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.