284
Views
0
CrossRef citations to date
0
Altmetric
Review

Characterization of coal-based humic acids in relation to their preparation methods

ORCID Icon, , , , , , , ORCID Icon & show all
Received 28 Feb 2019, Accepted 10 Sep 2020, Published online: 14 Oct 2020

References

  • Arslan, G., S. Edebali, and E. Pehlivan. 2010. Physical and chemical factors affecting the adsorption of Cr(VI) via humic acids extracted from brown coals. Desalination 255 (1–3):117–23. doi:10.1016/j.desal.2010.01.006.
  • Arslan, G., and E. Pehlivan. 2008. Uptake of Cr3+ from aqueous solution by lignite-based humic acids. Bioresource Technology 99:7597–605. doi:10.1016/j.biortech.2008.02.007.
  • Barbier, J., N. Charon, N. Dupassieux, A. Loppinet-Serani, L. Mahé, J. Ponthus, M. Courtiade, A. Ducrozet, A. Quoineaud, and F. Cansell. 2012. Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways. Biomass & Bioenergy 46:479–91. doi:10.1016/j.biombioe.2012.07.011.
  • Butuzova, L., A. Krzton, and O. Bazarova. 1998. Structure and properties of humic acids obtained from thermo-oxidised brown coal. Fuel 77 (6):581–84. doi:10.1016/S0016-2361(97)00263-9.
  • Cihlář, Z., L. Vojtová, P. Conte, S. Nasir, and J. Kučerík. 2014. Hydration and water holding properties of cross-linked lignite humic acids. Geoderma 230–231:151–60. doi:10.1016/j.geoderma.2014.04.018.
  • David, J., D. Šmejkalová, S. Hudecová, O. Zmeškal, R. Wandruszka, T. Gregor, and J. Kučerík. 2014. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite. Springerplus (3):156–82. doi:10.1186/2193-1801-3-156.
  • Dong, L. H., Q. Yuan, and H. L. Yuan. 2006. Changes of chemical properties of humic acids from crude and fungal transformed lignite. Fuel 85:2402–07. doi:10.1016/j.fuel.2006.05.027.
  • Doskočil, L., J. Burdíková-Szewieczková, V. Enev, L. Kalina, and J. Wasserbauer. 2018. Spectral characterization and comparison of humic acids isolated from some European lignites. Fuel 213:123–32. doi:10.1016/j.fuel.2017.10.114.
  • Duraia, E. M., B. Henderson, and G. W. Beall. 2015. Reduced humic acid nanosheets and its uses as nanofiller. Journal of Physics and Chemistry of Solids 85:86–90. doi:10.1016/j.jpcs.2015.05.001.
  • Fan, M., Y. Zhou, Q. Huang, Y. Chen, H. Xu, and S. Shen. 2020. The auxiliary effect of organic matter humic acids on the anaerobic biodegradation of tetrabromobisphenol A. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (1):31–40. doi:10.1080/15567036.2019.1587052.
  • Fashina, T. B., O. O. Adesanwo, and F. M. Adebiyi. 2016. influence of humic acid on biodegradation of petroleum hydrocarbons in oil-contaminated soils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (17):2624–32. doi:10.1080/15567036.2015.1079571.
  • Francioso, O., D. Montecchio, P. Gioacchini, and C. Ciavatta. 2005. Thermal analysis (TG–DTA) and isotopic characterization (13C–15N) of humic acids from different origins. Applied Geochemistry 20:537–44. doi:10.1016/j.apgeochem.2004.10.003.
  • Gao, L., S. Wang, and X. Zhao. 2013. Synthesis and characterization of agricultural controllable humic acid superabsorbent. Journal of Environmental Sciences 25 (Suppl.):S69–S76. doi:10.1016/S1001-0742(14)60629-X.
  • Habibul, N., and W. Chen. 2018. Structural response of humic acid upon binding with lead: A spectroscopic insight. Science of the Total Environment 643:479–85. doi:10.1016/j.scitotenv.2018.06.229.
  • Han, F., A. Meng, Q. Li, and Y. Zhang. 2016. Thermal decomposition and evolved gas analysis (TG-MS) of lignite coals from Southwest China. Journal of the Energy Institute 89 (1):94–100. doi:10.1016/j.joei.2015.01.007.
  • He, Q., Wan, K., Hoadley, A., Yeasmin, H., Miao, Z. 2015. TG-GC-MS study of volatile products from Shengli lignite pyrolysis. Fuel 156:121-128. doi:10.1016/j.fuel.2015.04.043.
  • He, Q., X. Li, Z. Miao, S. Huang, and K. Wan. 2019. The relevance between water release behavior and pore evolution of hard lignite during the thermal-drying process. Journal of the Energy Institute 92 (6):1689–96. doi:10.1016/j.joei.2019.01.005.
  • Hur, J., D. Lee, and H. Shin. 2009. Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Organic Geochemistry 40 (10):1091–99. doi:10.1016/j.orggeochem.2009.07.003.
  • Jaing, T., G. H. Han, Y. B. Zhang, Y. F. Huang, G. H. Li, Y. F. Guo, and Y. B. Yang. 2011. Improving extraction yield of humic substances from lignite with anthraquinone in alkaline solution. Journal of Central South University of Technology 18:68–72. doi:10.1007/s11771.
  • Jia, J., Y. Sun, Y. Zhang, Q. Liu, J. Cao, G. Huang, B. Xing, C. Zhang, L. Zhang, and Y. Cao. 2020. Facile and efficient fabrication of bandgap tunable carbon quantum dots derived from anthracite and their photoluminescence properties. Frontiers in Chemistry 8:123. doi:10.3389/fchem.2020.00123.
  • Khil Ko, S. L., I. V. Efimova, and O. V. Smirnova. 2011. Antioxidant properties of humic acids from brown coal. Solid Fuel Chemistry 45 (6):367–71. doi:10.3103/s036152191106005x.
  • Klavins, M., and O. Purmalis. 2013. Properties and structure of raised bog peat humic acids. Journal of Molecular Structure 1050:103–13. doi:10.1016/j.molstruc.2013.07.021.
  • Kurková, M., Z. Klika, C. Kliková, and J. Havel. 2004. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Chemosphere 54 (8):1237–45. doi:10.1016/j.chemosphere.2003.10.020.
  • Levi, G., O. Senneca, M. Causà, P. Salatino, P. Lacovig, and S. Lizzit. 2015. Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS. Carbon 90:181–96. doi:10.1016/j.carbon.2015.04.003.
  • Liu, X., M. Zhang, Z. Li, C. Zhang, C. Wan, Y. Zhang, and D. Lee. 2019. Inhibition of urease activity by humic acid extracted from sludge fermentation liquid. Bioresource Technology 290:121767. doi:10.1016/j.biortech.2019.121767.
  • Loow, Y., T. Y. Wu, M. J. Jamaliah, A. W. Mohammad, and W. H. Teoh. 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23 (3):1491–520. doi:10.1007/s10570-016-0936-8.
  • Ma, M., Bai, Y., Song, X., Wang, J., Su, W., Yao, M., Yu, G. 2020. Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG–MS. Sci. Total Environ. 728:138828. doi:10.1016/j.scitotenv.2020.138828.
  • MacCarthy, P. 2001. The principles of humic substances. Soil Science 166 (11):738–51. doi:10.1097/00010694-200111000-00003.
  • Nasir, S., T. B. Sarfaraz, T. V. Verheyen, and A. L. Chaffee. 2011. Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques. Fuel Processing Technology 92 (5):983–91. doi:10.1016/j.fuproc.2010.12.020.
  • Shi, L., Q. Liu, X. Guo, W. Wu, and Z. Liu. 2013. Pyrolysis behavior and bonding information of coal -A TGA study. Fuel Processing Technology 108:125–32. doi:10.1016/j.fuproc.2012.06.023.
  • Skhonde, M. P., A. A. Herod, T. J. van der Walt, W. L. Tsatsi, and K. Mokoena. 2006. The effect of thermal treatment on the compositional structure of humic acids extracted from South African bituminous coal. International Journal of Mineral Processing 81 (1):51–57. doi:10.1016/j.minpro.2006.07.001.
  • Stefanova, M., L. Gonsalvesh, S. Marinov, J. Czech, R. Carleer, and J. Yperman. 2016. Reductive pyrolysis of Miocene-aged lignite humic acids, Bulgaria. Fuel 165:324–30. doi:10.1016/j.fuel.2015.10.032.
  • Tian, B., Y. Y. Qiao, Y. Y. Tian, K. C. Xie, and D. W. Li. 2016. Effect of heat reflux extraction on the structure and composition of a high-volatile bituminous coal. Applied Thermal Engineering 109:560–68. doi:10.1016/j.applthermaleng.2016.08.104.
  • Wahyudiono, S. M., and M. Goto. 2008. Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chemical Engineering and Processing: Process Intensification 47:1609–19. doi:10.1016/j.cep.2007.09.001.
  • Wang, X., W. Qin, F. Jiao, R. Liu, and D. Wang. 2019. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderately oxidized galena surface. Minerals Engineering 137:102–07. doi:10.1016/j.mineng.2019.03.029.
  • Weber, J., Y. Chen, E. Jamroz, and T. Miano. 2018. Preface: Humic substances in the environment. Journal of Soils and Sediments 18 (8):2665–67. doi:10.1007/s11368-018-2052-x.
  • Yang, F., Y. C. Hou, W. Z. Wu, M. G. Niu, S. H. Ren, and Q. Wang. 2017. A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids. Fuel 189:408–18. doi:10.1016/j.fuel.2016.10.112.
  • Yang, T., and M. E. Hodson. 2018. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water. Science of the Total Environment 635:1036–46. doi:10.1016/j.scitotenv.2018.04.176.
  • Yu, Y. J., J. Z. Liu, R. K. Wang, J. H. Zhou, and K. F. Cen. 2012. Effect of hydrothermal dewatering on the slurryability of brown coals. Energy Conversion and Management 57:8–12. doi:10.1016/j.enconman.2011.11.016.
  • Zhang, S. Q., L. Yuan, W. Li, Z. Lin, Y. T. Li, S. W. Hu, and B. Q. Zhao. 2017. Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere 166:334–42. doi:10.1016/j.chemosphere.2016.09.095.
  • Zhou, L., W. Liu, and T. Feng. 2018. Study on influence factors of manufacturing humic acids through oxidation of Shengli lignite by hydrogen peroxide. Modern Chemical Industry 38 (2):91–94. (in Chinese). doi:10.16606/j.cnki.0253-4320.2018.02.021.
  • Zhou, L., L. Yuan, B. Zhao, Y. Li, and Z. Lin. 2019. Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions. PLoS One 14 (5):e0217469. doi:10.1371/journal.pone.0217469.
  • Zykova, M., I. Schepetkin, M. Belousov, S. Krivoshchekov, L. Logvinova, K. Bratishko, M. Yusubov, S. Romanenko, and M. Quinn. 2018. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules 23 (4):753. doi:10.3390/molecules23040753.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.