108
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of heat transfer improvement of a new designed artificially roughened solar air heater using triangular ribs with semi-circular nooks

, ORCID Icon, , & ORCID Icon
Received 12 Jul 2020, Accepted 13 Sep 2020, Published online: 15 Oct 2020

References

  • Alam, T., and M. H. Kim. 2017. A critical review on artificial roughness provided in rectangular solar air heater duct. Renewable and Sustainable Energy Reviews 69:387–400. doi:10.1016/j.rser.2016.11.192.
  • Alam, T., R. P. Saini, and J. S. Saini. 2014. Effect of circularity of perforation holes in V-shaped blockages on heat transfer and friction characteristics of rectangular solar air heater duct. Energy Conversion and Management 86:952–63. doi:10.1016/j.enconman.2014.06.050.
  • Al-Damooka, M., Z. A. H. Obaid, M. Al Qubeissic, D. Dixon-Hardyd, J. Cottome, and P. J. Heggsd. 2019. CFD modeling and performance evaluation of multipass solar air heaters. Numerical Heat Transfer, Part A: Applications 76 (6):438–64. doi:10.1080/10407782.2019.1637228.
  • ANSYS Fluent Theory Guide ANSYS, Inc. Release 15.0, ( accessed November 2013).
  • Antony, A. L., S. P. Shetty, N. Madhwesh, N. Y. Sharma, and K. V. Karanth. 2020. In fl uence of stepped cylindrical turbulence generators on the thermal enhancement factor of a fl at plate solar air heater. Solar Energy 198:295–310. doi:10.1016/j.solener.2020.01.065.
  • Arunkumar, H. S., K. V. Karanth, and S. Kumar. 2020. Review on the design modi fi cations of a solar air heater for improvement in the thermal performance. Sustainable Energy Technologies and Assessments 39:100685. doi:10.1016/j.seta.2020.100685.
  • ASHRAE Standard 93. 2003. Method of testing to determine the thermal performance of solar collectors. American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA30329.
  • Benli, H. 2013. Experimentally derived ef fi ciency and exergy analysis of a new solar air heater having different surface shapes. Renewable Energy 50:58–67. doi:10.1016/j.renene.2012.06.022.
  • Brown, G. 2002. The Darcy-Weisbach equation. Stillwater, OK: Oklahoma State University Publication.
  • Gabhane, M. G., and A. B. Kanase-Patil. 2017. Experimental analysis of double flow solar air heater with multiple C shape roughness,”. Solar Energy 155:1411–16. doi:10.1016/j.solener.2017.07.038.
  • Gawande, V. B., A. S. Dhoble, and D. B. Zodpe. 2014. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater. Scientific World Journal 2014:11. doi:10.1155/2014/567257.
  • Ghritlahre, H. K., P. K. Sahu, and S. Chand. 2020. Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – An experimental study. Solar Energy 199:173–82. doi:10.1016/j.solener.2020.01.068.
  • Ghritlahre, H. K., and R. K. Prasad. 2018a. Prediction of exergetic efficiency of arc shaped wire roughened solar air heater using ANN model. International Journal of Heat and Technology 36 (3):1107–15. doi:10.18280/ijht.360343.
  • Ghritlahre, H. K., and R. K. Prasad. 2018b. Prediction of heat transfer of two different types of roughened solar air heater using artificial neural network technique. Thermal Science and Engineering Progress 8:145–53. doi:10.1016/j.tsep.2018.08.014.
  • Gilani, S. E., H. H. Al-Kayiem, D. E. Woldemicheal, and S. I. Gilani. 2017. Performance enhancement of free convective solar air heater by pin protrusions on the absorber. Solar Energy 151:173–85. doi:10.1016/j.solener.2017.05.038.
  • Handoyo, E. A., D. Ichsani, Prabowo, and Sutardi. 2016. Numerical studies on the effect of delta-shaped obstacles’ spacing on the heat transfer and pressure drop in v-corrugated channel of solar air heater. Solar Energy 131:47–60. doi:10.1016/j.solener.2016.02.031.
  • Kalogirou, S. A., S. Karellas, K. Braimakis, C. Stanciu, and V. Badescu. 2016. Exergy analysis of solar thermal collectors and processes. Progress in Energy and Combustion Science 56:106–37. doi:10.1016/j.pecs.2016.05.002.
  • Kumar, R., A. Kumar, and V. Goel. 2017. A parametric analysis of rectangular rib roughened triangular duct solar air heater using computational fluid dynamics. Solar Energy 157:1095–107. doi:10.1016/j.renene.2018.07.078.
  • Kumar, R., A. Kumar, and V. Goel. 2019. Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater. Renewable Energy 131:788–99. doi:10.1016/j.renene.2018.07.078.
  • Mahmood, A. J., L. B. Y. Aldabbagh, and F. Egelioglu. 2015. Investigation of single and double pass solar air heater with transverse fins and a package wire mesh layer. Energy Conversion and Management 89:599–607. doi:10.1016/j.enconman.2014.10.028.
  • Menasria, F., and M. Zedairia. 2017. Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio. Energy 13:593–608. doi:http://dx.doi.10.1016/j.energy.2017.05.002.
  • Nidhul, K., S. Kumar, A. K. Yadav, and S. Anish. 2020. Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater : CFD and exergy analysis. Energy 200:117448. doi:10.1016/j.energy.2020.117448.
  • Nine, J., G. H. Lee, H. S. Chung, M. Ji, and H. Jeong. 2014. Turbulence and pressure drop behaviors around semicircular ribs in a rectangular channel. Thermal Science 18:419–30. doi:10.2298/tsci111022142n.
  • Patankar, S. V., and D. B. Spalding. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer 15 (10):1787–806. doi:10.1016/0017-9310(72)90054-3.
  • Poongavanam, G. K., K. Panchabikesan, A. J. D. Leo, and V. Ramalingam. 2018. Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate. Renewable Energy 127:213–29. doi:10.1016/j.renene.2018.04.056.
  • Prasad, B. N., and J. S. Saini. 1988. Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Solar Energy 41 (6):555–60. doi:10.1016/0038-092X(88)90058-8.
  • Priyam, A. 2017. Heat transfer and pressure drop characteristics of wavy fin solar air heater. International Journal of Heat and Technology 35 (4):1015–22. doi:10.18280/ijht.350438.
  • Sharma, S. K., and V. R. Kalamkar. 2015. Thermo-hydraulic performance analysis of solar air heaters having artificial roughness-A review. Renewable and Sustainable Energy Reviews 41:413–35. doi:10.1016/j.rser.2014.08.051.
  • Thakur, S., and N. S. Thakur. 2020. Impact of multi-staggered rib parameters of the ‘W’ shaped roughness on the performance of a solar air heater channel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2020.1764672.
  • Wang, L., and B. Sunden. 2007. Experimental investigation of local heat transfer in a square duct with various-shaped ribs. Heat and Mass Transfer 43 (8):759–66. doi:10.1007/s00231-006-0190-y.
  • Webb, R. L., and E. R. Eckert. 1972. Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer 15 (9):1647–58. doi:10.1016/0017-9310(72)90095-6.
  • Yadav, A. S., and J. L. Bhagoria. 2013a. A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate. Energy 55:1127–42. doi:10.1016/j.energy.2013.03.066.
  • Yadav, A. S., and J. L. Bhagoria. 2013b. Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach. Renewable and Sustainable Energy Reviews 23:60–79. doi:10.1016/j.rser.2013.02.035.
  • Yadav, A. S., and J. L. Bhagoria. 2014a. A numerical investigation of square sectioned transverse rib roughened solar air heater. International Journal of Thermal Sciences 79:111–31. doi:10.1016/j.ijthermalsci.2014.01.008.
  • Yadav, A. S., and J. L. Bhagoria. 2014b. A numerical investigation of turbulent flows through an artificially roughened solar air heater. Numerical Heat Transfer, Part A: Applications 65 (7):679–98. doi:10.1080/10407782.2013.846187.
  • Yadav, A. S., and J. L. Bhagoria. 2014c. A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. International Journal of Heat and Mass Transfer 70:1016–39. doi:10.1016/j.ijheatmasstransfer.2013.11.074.
  • Yadav, K. D., and R. K. Prasad. 2020. Performance analysis of parallel flow flat plate solar air heater having arc shaped wire roughened absorber plate. Reinforced Plastics 32:23–44. doi:10.1016/j.ref.2019.10.002.
  • Yang, Y., and P. Chen. 2014. Numerical study of a solar collector with partitions. Numerical Heat Transfer, Part A: Applications 66 (7):37–41. doi:10.1080/10407782.2014.892330.
  • Zina, B., A. Filali, S. Laouedj, and N. Benamara. 2019. Numerical Investigation of a Solar Air Heater (SAH) with triangular artificial roughness having a curved top corner. Journal of Applied Fluid Mechanics 12 (6):1919–28. doi:10.29252/jafm.12.06.29927.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.