323
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Predictive Modelling and Optimization of Performance and Emissions of Acetylene Fuelled CI Engine Using ANN and RSM

ORCID Icon, &
Pages 3544-3562 | Received 18 May 2020, Accepted 20 Sep 2020, Published online: 12 Oct 2020

References

  • Abuhabaya, A., J. Fieldhouse, and D. Brown. 2013. The effects of using biodiesel on CI (compression ignition) engine and optimization of its production by using response surface methodology. Energy 59:56–62. doi:10.1016/j.energy.2013.06.056.
  • Awad, O. I., R. Mamat, O. M. Ali, W. H. Azmi, K. Kadirgama, I. M. Yusri, A. M. Leman, T. Yusaf. 2017. Response surface methodology (RSM) based multi-objective optimization of fusel oil -gasoline blends at di ff erent water content in SI engine. Energy Conversion and Management 150:222–41. doi:10.1016/j.enconman.2017.07.047.
  • Baligidad, S. M., K. Elangovan, and S. Shankar. 2019. Investigation of parameters influencing mechanical properties in SIS by using RSM U. Chandrasekhar 58:178–200.
  • Behera, P., and S. Murugan. 2013. Combustion, performance and emission parameters of used transformer oil and its diesel blends in a di diesel engine. Fuel 104:147–54. doi:10.1016/j.fuel.2012.09.077.
  • Behera, P., S. Murugan, and G. Nagarajan. 2014. Dual fuel operation of used transformer oil with acetylene in a di diesel engine. Energy Conversion and Management 87:840–47. doi:10.1016/j.enconman.2014.07.034.
  • Bharadwaz, Y. D., B. G. Rao, V. D. Rao, and C. Anusha. 2016. Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology. Alexandria Engineering Journal 55:1201–09. doi:10.1016/J.AEJ.2016.04.006.
  • Cao, D. N., A. T. Hoang, H. Q. Luu, et al. 2020. Effects of injection pressure on the NOx and PM emission control of diesel engine: A review under the aspect of PCCI combustion condition. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 7036. doi:10.1080/15567036.2020.1754531.
  • Channapattana, S. V., A. A. Pawar, and P. G. Kamble. 2017. Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model. Applied Energy 187:84–95. doi:10.1016/J.APENERGY.2016.11.030.
  • Choudhary, K. D., A. Nayyar, and M. S. Dasgupta. 2018. Effect of compression ratio on combustion and emission characteristics of C.I. Engine operated with acetylene in conjunction with diesel fuel. Fuel 214:489–96. doi:10.1016/j.fuel.2017.11.051.
  • EL_Kassaby, M., and M. A. Nemit_allah. 2013. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel. Alexandria Engineering Journal 52:1–11. doi:10.1016/J.AEJ.2012.11.007.
  • Gumus, M., C. Sayin, and M. Canakci. 2012. The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel-diesel fuel blends. Fuel 95:486–94. doi:10.1016/j.fuel.2011.11.020.
  • Hirkude, J., and A. S. Padalkar. 2014a. Experimental investigation of the effect of compression ratio on performance and emissions of CI engine operated with waste fried oil methyl ester blend. Fuel Processing Technology 128:367–75. doi:10.1016/j.fuproc.2014.07.026.
  • Hirkude, J. B., and A. S. Padalkar. 2014b. Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology. Fuel 119:266–73. doi:10.1016/J.FUEL.2013.11.039.
  • Hosmath, R. S., N. R. Banapurmath, S. V. Khandal, V. N. Gaitonde, Y. H. Basavarajappa, V. S. Yaliwal. 2016. Effect of compression ratio, CNG flow rate and injection timing on the performance of dual fuel engine operated on honge oil methyl ester (HOME) and compressed natural gas (CNG). Renewable Energy 93:579–90. doi:10.1016/j.renene.2016.03.010.
  • Jaichandar, S., and K. Annamalai. 2013. Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 55:330–39. doi:10.1016/j.energy.2013.04.019.
  • Javed, S., Y. V. V. Satyanarayana Murthy, R. U. Baig, and D. Prasada Rao. 2015. Development of ANN model for prediction of performance and emission characteristics of hydrogen dual fueled diesel engine with Jatropha Methyl Ester biodiesel blends. Journal of Natural Gas Science & Engineering 26:549–57. doi:10.1016/J.JNGSE.2015.06.041.
  • Kannan, G. R., and R. Anand. 2012. Effect of injection pressure and injection timing on DI diesel engine fuelled with biodiesel from waste cooking oil. Biomass & Bioenergy 46:343–52. doi:10.1016/j.biombioe.2012.08.006.
  • Kesgin, U. 2004. Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission. Fuel 83:885–95. doi:10.1016/J.FUEL.2003.10.025.
  • Khoobbakht, G., G. Najafi, M. Karimi, and A. Akram. 2016. Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology. Applied Thermal Engineering 99:1006–17. doi:10.1016/J.APPLTHERMALENG.2015.12.143.
  • Lakshmanan, T., and G. Nagarajan. 2010a. Experimental investigation on dual fuel operation of acetylene in a DI diesel engine. Fuel Processing Technology 91:496–503. doi:10.1016/J.FUPROC.2009.12.010.
  • Lakshmanan, T., and G. Nagarajan. 2010b. Experimental investigation of timed manifold injection of acetylene in direct injection diesel engine in dual fuel mode. Energy 35:3172–78. doi:10.1016/j.energy.2010.03.055.
  • Lee, T., and R. D. Reitz. 2016. Optimization of a high-speed direct-injection diesel engine equipped with a common rail. 125:541–46. doi:10.1115/1.1559900.
  • Leo, G. M. L., and S. S. S. Arivazhagan. 2018. Experimental investigation, optimization and ANN model prediction of a gasoline premixed waste cooking oil fueled HCCI – DI engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering 1. doi:10.1007/s40430-018-0967-1.
  • Lotfan, S., R. A. Ghiasi, M. Fallah, and M. H. Sadeghi. 2016. ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II. Applied Energy 175:91–99. doi:10.1016/J.APENERGY.2016.04.099.
  • Murugapoopathi, S., and D. Vasudevan. 2019. Energy and exergy analysis on variable compression ratio multi-fuel engine. Journal of Thermal Analysis and Calorimetry 136:255–66. doi:10.1007/s10973-018-7761-2.
  • Patel, H., V. Rajai, P. Das, S. Charola, A. Mudgal, S. Maiti. 2018. Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM. Renewable Energy 122:310–22. doi:10.1016/j.renene.2018.01.071.
  • Ramachandran, T., K. P. Padmanaban, and P. Nesamani. 2012. Modeling and analysis of IC engine rubber mount using finite element method and RSM. Procedia Engineering 38:1683–92. doi:10.1016/J.PROENG.2012.06.205.
  • Rao, P., G. Kiran, and P. Chintala. 2016. Parametric study and optimization using RSM of DI diesel engine for lower emissions. Journal of the Brazilian Society of Mechanical Sciences and Engineering. doi:10.1007/s40430-016-0600-0.
  • Roy, S., A. K. Das, P. K. Bose, and R. Banerjee. 2014. ANN metamodel assisted particle swarm optimization of the performance-emission trade-off characteristics of a single cylinder CRDI engine under CNG dual-fuel operation. Journal of Natural Gas Science & Engineering 21:1156–62. doi:10.1016/J.JNGSE.2014.11.013.
  • Saleh, H. E. 2008. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine. Fuel 87:3031–39. doi:10.1016/j.fuel.2008.04.007.
  • Sayin, C., and M. Gumus. 2011. Impact of compression ratio and injection parameters on the performance and emissions of a di diesel engine fueled with biodiesel-blended diesel fuel. Applied Thermal Engineering 31:3182–88. doi:10.1016/j.applthermaleng.2011.05.044.
  • Shameer, P. M., and K. Ramesh. 2017. Influence of antioxidants on fuel stability of Calophyllum inophyllum biodiesel and RSM-based optimization of engine characteristics at varying injection timing and compression ratio. Journal of the Brazilian Society of Mechanical Sciences and Engineering 39:4251–73. doi:10.1007/s40430-017-0884-8.
  • Srivastava, A. K., S. L. Soni, D. Sharma, and N. L. Jain. 2018. Effect of injection pressure on performance, emission, and combustion characteristics of diesel–acetylene-fuelled single cylinder stationary CI engine. Environmental Science and Pollution Research 25:7767–75. doi:10.1007/s11356-017-1070-3.
  • Srivastava, A. K., S. L. Soni, D. Sharma, D. Sonar, N. L. Jain. 2017. Effect of compression ratio on performance, emission and combustion characteristics of diesel–acetylene-fuelled single-cylinder stationary CI engine. Clean Technologies and Environmental Policy 19:1361–72. doi:10.1007/s10098-017-1334-0.
  • Swami Nathan, S., J. M. Mallikarjuna, and A. Ramesh. 2008. HCCI engine operation with acetylene the fuel. SAE Technical Papers. doi:10.4271/2008-28-0032.
  • Swami Nathan, S., J. M. Mallikarjuna, and A. Ramesh. 2011. HCCI engine operation with acetylene the fuel. SAE Technical Papers Series 1:218–23. doi:10.4271/2008-28-0032.
  • Syed, A., S. A. P. Quadri, G. A. P. Rao, and W. Mohd. 2017. Experimental investigations on DI (direct injection) diesel engine operated on dual fuel mode with hydrogen and mahua oil methyl ester (MOME) as injected fuels and effects of injection opening pressure. Applied Thermal Engineering 114:118–29. doi:10.1016/j.applthermaleng.2016.11.152.
  • Venugopal, P., R. Kasimani, and S. Chinnasamy. 2018. Prediction and optimization of CI engine performance fuelled with Calophyllum inophyllum diesel blend using response surface methodology (RSM). Environmental Science and Pollution Research 25:24829–44. doi:10.1007/s11356-018-2519-8.
  • Yang, F., H. Cho, H. Zhang, J. Zhang, Y. Wu. 2018. Arti fi cial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery. Energy Conversion and Management 164:15–26. doi:10.1016/j.enconman.2018.02.062.
  • Yusaf, T. F., D. R. Buttsworth, K. H. Saleh, and B. F. Yousif. 2010. CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Applied Energy 87:1661–69. doi:10.1016/j.apenergy.2009.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.