120
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of the cylindrical shaped heat pipe utilizing water-based CuO and ZnO hybrid nanofluids

ORCID Icon, ORCID Icon &
Received 15 Jul 2020, Accepted 27 Sep 2020, Published online: 20 Oct 2020

References

  • Abolfazli Esfahani, J., S. Safaiyan, and S. Rashidi. 2019. Heat transfer in an eight-pass oscillating loop heat pipe equipped with cooling tower: An experimental study. Journal of Thermal Analysis and Calorimetry 136 (4):1869–77. doi:10.1007/s10973-018-7835-1.
  • Akar, S., S. Rashidi, J. A. Esfahani, and N. Karimi. 2018. Targeting a channel coating by using magnetic field and magnetic nanofluids. Journal of Thermal Analysis and Calorimetry 3:1–8.
  • Akbarzadeh, M., S. Rashidi, M. Bovand, and R. Ellahi. 2016. A sensitivity analysis on thermal and pumping power for the fl ow of nano fl uid inside a wavy channel. Journal of Molecular Liquids 220:1–13. doi:10.1016/j.molliq.2016.04.058.
  • Akbarzadeh, M., S. Rashidi, N. Karimi, and N. Omar. 2018. Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in solar heaters by corrugated absorber plates. Advanced Powder Technology 29 (9):2243–54. doi:10.1016/j.apt.2018.06.009.
  • Akbarzadeh, M., S. Rashidi, N. Karimi, and N. Omar. 2019. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. Journal of Thermal Analysis and Calorimetry 135 (1):177–94. doi:10.1007/s10973-018-7044-y.
  • Ali, H. M., M. D. Azhar, M. Saleem, Q. S. Saeed, and A. Saieed. 2015. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids. Thermal Science 19 (6):2039–48. doi:10.2298/TSCI150526130A.
  • Arulprakasajothi, M., N. D. Raja, N. Beemkumar, and K. Elangovan. 2019. Environmental Effects Experimental study on Al2O3/H2O nanofluid with conical sectional insert in concentric tube heat exchanger. Energy Sources Part A Recovery Utilization and Environmental Effects 41:1–13.
  • Bozorgan, N., and N. Bozorgan. 2013. Effect of nanofluids on heat pipe thermal performance: A review of the recent literature. Analele Universitătii “Eftimie Murgu” Reşiţa, Anul Xx(2):155–66.
  • Bumataria, R. K., N. K. Chavda, and A. H. Nalbandh. 2020. Water based CuO (Copper Oxide) and ZnO (Zinc Oxide) hybrid nanofluids deals with thermal management device.
  • Bumataria, R. K., N. K. Chavda, and H. Panchal. 2019. Current research aspects in mono and hybrid nano fl uid based heat pipe technologies. Heliyon 5 (April):1–17. doi:10.1016/j.heliyon.2019.e01627.
  • Das, S., A. Giri, and S. Samanta. 2020. Environmental Effects Heat transfer enhancement in a thermosyphon using TiO2 nanofluid through natural convection. Energy Sources Part A Recovery Utilization and Environmental Effects 42:1–18.
  • Du, Q., J. Xu, S. Chen, and J. Gao. 2019. Environmental effects study on radiation characteristics of Au-CuS nanofluids. Energy Sources Part A Recovery Utilization and Environmental Effects 41:1–11.
  • EL-Nasr, M. A., and S. M. EL-Haggar. 2015. Performance of a wickless heat pipe solar collector. Energy Sources 513–522.
  • Ghanbarpour, M., N. Nikkam, R. Khodabandeh, and M. S. Toprak. 2015. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Applied Thermal Engineering 90:127–35. doi:10.1016/j.applthermaleng.2015.07.004.
  • Han, W. S., and S. H. Rhi. 2011. Thermal characteristics of grooved heat pipe with NHybrid nanofluids. Thermal Science 15 (1):195–206. doi:10.2298/TSCI100209056H.
  • Hemmat Esfe, M., S. Wongwises, A. Naderi, A. Asadi, M. R. Safaei, H. Rostamian, M. Dahari, and A. Karimipour. 2015. Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. International Communications in Heat and Mass Transfer 66:100–04. doi:10.1016/j.icheatmasstransfer.2015.05.014.
  • Hormozi, F., B. ZareNezhad, and H. R. Allahyar. 2016. An experimental investigation on the effects of surfactants on the thermal performance of hybrid nanofluids in helical coil heat exchangers. International Communications in Heat and Mass Transfer 78:271–76. doi:10.1016/j.icheatmasstransfer.2016.09.022.
  • Kline, S. J., and F. A. McClintock. 1953. Describing uncertainties in single-sample experiments. Mechanical Engineering 75 (1):3–8.
  • Kumaresan, G., S. Venkatachalapathy, and L. G. Asirvatham. 2014. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. International Journal of Heat and Mass Transfer 72:507–16. doi:10.1016/j.ijheatmasstransfer.2014.01.029.
  • Liu, Z., and Q. Zhu. 2011. Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Conversion and Management 52 (1):292–300. doi:10.1016/j.enconman.2010.07.001.
  • Liu, Z. H., Y. Y. Li, and R. Bao. 2010. Thermal performance of inclined grooved heat pipes using nanofluids. International Journal of Thermal Sciences 49 (9):1680–87. doi:10.1016/j.ijthermalsci.2010.03.006.
  • Parametthanuwat, T., S. Rittidech, A. Pattiya, Y. Ding, and S. Witharana. 2011. Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer. Nanoscale Research Letters 6 (1):1–10. doi:10.1186/1556-276X-6-315.
  • Putra, N., W. N. Septiadi, H. Rahman, and R. Irwansyah. 2012. Thermal performance of screen mesh wick heat pipes with nanofluids. Experimental Thermal and Fluid Science 40:10–17. doi:10.1016/j.expthermflusci.2012.01.007.
  • Rahimi, A., A. Kasaeipoor, and A. Amiri. 2017. Lattice Boltzmann method based on Dual-MRT model for three-dimensional natural convection and entropy generation in CuO – Water nanofluid filled cuboid enclosure included with discrete active walls. Computers & Mathematics with Applications.
  • Rashidi, S., S. Akar, M. Bovand, and R. Ellahi. 2018. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renewable Energy 115:400–10. doi:10.1016/j.renene.2017.08.059.
  • Reza, M., M. Moravej, and M. Hossein. 2020. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renewable Energy 146:2316–29. doi:10.1016/j.renene.2019.08.081.
  • Salem, M. December 2017. A review: On the heat pipe and its applications.4th International Conference on Energy Engineering.
  • Senthilkumar, R., S. Vaidyanathan, and B. Sivaraman. 2012. Effect of inclination angle in heat pipe performance using copper nanofluid. Procedia Engineering 38:3715–21. doi:10.1016/j.proeng.2012.06.427.
  • Shafahi, M., V. Bianco, K. Vafai, and O. Manca. 2010. An investigation of the thermal performance of cylindrical heat pipes using nanofluids. International Journal of Heat and Mass Transfer 53 (1–3):376–83. doi:10.1016/j.ijheatmasstransfer.2009.09.019.
  • Sundar, L. S., M. K. Singh, and A. C. M. Sousa. 2014. Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer 52:73–83. doi:10.1016/j.icheatmasstransfer.2014.01.012.
  • Toghraie, D., V. A. Chaharsoghi, and M. Afrand. 2016. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. Journal of Thermal Analysis and Calorimetry 125 (1):527–35. doi:10.1007/s10973-016-5436-4.
  • Torabi, N., M. Dickson, and N. Karimi. 2016. Theoretical investigation of entropy generation and heat transfer by forced convection of copper-water nanofluid in a porous channel - local thermal non-equilibrium and partial filling effects. Powder Technology 301:234–54. doi:10.1016/j.powtec.2016.06.017.
  • Upadhyay, B. H., A. J. Patel, and P. V. Ramana. 2019. A detailed review on solar parabolic trough collector. International Journal of Ambient Energy 1–21. doi:10.1080/01430750.2019.1636869.
  • Upadhyay, B. H., A. J. Patel, and P. V. Ramana. 2020. Environmental effects comparative study of parabolic trough collector for low-temperature water heating. Energy Sources Part A Recovery Utilization and Environmental Effects 42:1–17.
  • Vijayakumar, M., P. Navaneethakrishnan, and G. Kumaresan. 2016. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids. Experimental Thermal and Fluid Science 79:25–35. doi:10.1016/j.expthermflusci.2016.06.021.
  • Vijayakumar, M., P. Navaneethakrishnan, G. Kumaresan, and R. Kamatchi. 2017. A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3nanofluids. Journal of the Taiwan Institute of Chemical Engineers 81:190–98. doi:10.1016/j.jtice.2017.10.032.
  • Wang, P. Y., X. J. Chen, Z. H. Liu, and Y. P. Liu. 2012. Application of nanofluid in an inclined mesh wicked heat pipes. Thermochimica Acta 539:100–08. doi:10.1016/j.tca.2012.04.011.
  • Wang, Y., J. Zhang, J. Cen, and F. Jiang. 2016. A feasibility study about using SiO 2 nanofluid screen mesh wick heat pipe for cooling of high-power LEDs. Heat Transfer Engineering 37 (9):741–50. doi:10.1080/01457632.2015.1080519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.