72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation the relationship between nuclear magnetic resonance and acoustic velocity for improving the evaluation of tight gas reservoirs

ORCID Icon, , &
Received 30 Jul 2020, Accepted 29 Sep 2020, Published online: 26 Oct 2020

References

  • Archie, G. E. 2007. The electrical resistivity log as an aid in determining some reservoir characteristic. Well Logging Technology 146 (3):54–62.
  • Castagna, J. P., M. L. Batzle, and R. L. Eastwood. 1985. Relationship between compressional and shear‐wave velocities in classic silicate rocks. Geophysics 50 (4):571–81. doi:10.1190/1.1441933.
  • Carr, H. Y.,&M. L. Purcell, E. M. 1954. Effect of diffusion on free precession in nuclear magnetic resonance experiments.. Physical Review,94(3), 630-638 :10.1103/PhysRev.94.630
  • Chen, H., D. Tang, S. Li, H. Xu, S. Tao, J. Wang, and Y. Liu. 2019. Dynamic evaluation of heterogeneity in pore-fracture system of different rank coals under different confining pressure based on low-field NMR. Energy Sources Part A Recovery Utilization and Environmental Effects 1:1–15.
  • Deng, S., D. Wang, S. Y., Hu, Y., S. Ge, X. & He, X. 2013. Integrated petrophysical log characterization for tight carbonate reservoir effectiveness: a case study from the longgang area, sichuan basin, china. Petroleum Science:10.1007/s12182-013-0282-5
  • Cleary, M. P., Chen, I. W., & Lee, S. M. 1980. Self-consistent techniques for heterogeneous media. Journal of Engineering Mechanics,106(5), 861–887. doi:10.1243/03093247V154235
  • Feng, Z., Z. Yue, and Z. Dongzhi. 2016. Prediction method for shear wave velocity based on NMR T2 geometric average. Well Logging Technology 40 (1):23–27.
  • Freedman, R., C. C. Minh, G. Gubelin, J. J. Freeman, T. McGinness, B. Terry, and D. Rawlence. 1998.Combining NMR and density logs for petrophysical analysis in gas-bearing formations. SPWLA 39th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts.
  • Gallegos, D., & Smith, D. 1988. A nmr technique for the analysis of pore structure: determination of continuous pore size distribution. Journal of Colloid & Interface Science,122 (1), 143–153. doi:10.1016/0021-9797(88)90297-4
  • Ge, X., Y. Fan, Y. Xiao, J. Liu, D. Xing, D. Gu, and S. Deng. 2017. Quantitative evaluation of the heterogeneity for tight sand based on the nuclear magnetic resonance imaging. Journal of Natural Gas Science and Engineering 38:74–80. doi:10.1016/j.jngse.2016.12.037.
  • Gregory, A. R. 1967. Mode conversion technique employed in shear wave velocity studies of rock samples under axial and uniform compression. Society of Petroleum Engineers Journal 7 (2):136–48. doi:10.2118/1711-PA.
  • Han, D. H., A. Nur, and D. Morgan. 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51 (11):2093–107. doi:10.1190/1.1442062.
  • Josh, M., Esteban, L., Piane, C. D., Sarout, J., Dewhurst, D. N., & Clennell, M. B. (2012).Laboratory characterisation of shale properties.Journal of Petroleum ence & Engineering, 88-89(2), 107–124. doi:10.1016/j.petrol.2012.01.023
  • Kumar, M., and D.-H. Han. 2005. Pore shape effect on elastic properties of carbonate rocks. Society of Exploration Geophysicists 1477–80.
  • Kuster, G. T., &Toksöz, M. N.1974. Velocity and attenuation of seismic waves in two-phase media: part i. theoretical formulations. Geophysics, 39(5),587. doi:10.1190/1.1440450
  • Li, H., X. Hu, S. Deng, and M. Xu. 2020. Fast multidimensional NMR inversion based on randomized singular value decomposition. Journal of Petroleum Science and Engineering, 190. doi:10.1016/j.petrol.2020.107044
  • Liu, T. Y., T. Z. Tang, D. U. Huan-Hong, Z. H. Hai‐Ning, and W. A. Hong‐Tao. 2013. Study of rock conductive mechanism based on pore structure. Chinese Journal of Geophysics 56 (8):2818–26.
  • Márquez, G., M. R. Bencomo, A. Requena, and J. C. Fortes. 2010. Nmr measurements and determination of rock petrophysical properties and lithofacies (naricual formation, eastern venezuelan basin). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (4):335–43. doi:10.1080/15567030903030633.
  • Mavko, G., & Bandyopadhyay, K. 2009. Approximate fluid substitution for vertical velocities in weakly anisotropic vti rocks. Geophysics,74(1), D1–D6. doi:10.1190/1.3026552
  • MARTINEZ, GABRIELA, Texas, Tech & U. 2000. Petrophysical measurements on shales using nmr.. Bulletin:10.1306/a9673838-1738-11d7-8645000102c1865d
  • Meiboom, S., & Gill, D. 1958. Modified spin‐echo method for measuring nuclear relaxation times. Review of entific Instruments,29(8), 688-691:10.1063/1.1716296
  • Norris, & Andrew, N. 1985. Radiation from a point source and scattering theory in a fluid-saturated porous solid. Journal of the Acoustical Society of America, 77(6), 2012. doi:10.1121/1.391773
  • Prasad, M. 2001. Mapping impedance microstructures in rock with acoustic microscopy. The Leading Edge 20 (2):172–79. doi:10.1190/1.1438902.
  • Rahmanian, M., N. Solano, and R. Aguilera. 2010. Storage and output flow from shale and tight gas reservoirs. SPE 133611.
  • Sarout, J., Piane, C. D., Nadri, D., & Dewhurst, D. N. 2014. A more robust experimental determination of Thomsen's anisotropy parameters – The δ parameter. 10th Euroconference on Rock Physics and Geomechanics
  • Schön, J. 2011. Physical properties of rocks: A workbook, Oxford,Elsevier.
  • Soeder, D. J., and P. L. Randolph. 1987. Porosity, permeability, and pore structure of the tight Mesaverde Sandstone, Piceance Basin, Colorado. SPE Formation Evaluation 2 (2):129–36. doi:10.2118/13134-PA.
  • Tang, X. M. 2011. A unified theory for elastic wave propagation through porous media containing cracks-An extension of Biot’s poroelastic wave theory. Science China (Earth Science) 41:784–95.
  • Tang, X. M., and D. J. Patterson. 2009. Single-well S-wave imaging using multicomponent dipole acoustic-log data. Geophysics 74 (6):211–23. doi:10.1190/1.3227150.
  • Tang, X. M., X. Chen, and X. Xu. 2012. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics 77 (6):245–D252. doi:10.1190/geo2012-0091.1.
  • Tao, S., S. Chen, and Z. Pan. 2019. Current status, challenges, and policy suggestions for coalbed methane industry development in china: A review. Energy Science and Engineering 7 9.
  • Tao, S., Z. Pan, S. Chen, and S. Tang. 2019. Coal seam porosity and fracture heterogeneity of marcolithotypes in the fanzhuang block, southern qinshui basin, china. Journal of Natural Gas Ence and Engineering 66:148–158. doi:10.1016/j.jngse.2019.03.030
  • Tao, S., Z. Pan, S. Tang, and S. Chen. 2019. Current status and geological conditions for the applicability of cbm drilling technologies in china: A review. International Journal of Coal Geology 202:95–108. doi:10.1016/j.coal.2018.11.020.
  • Verwer, K., G. P. Eberli, and R. J. Weger. 2011. Effect of pore structure on electrical resistivity in carbonates. AAPG Bulletin 95 (2):175–90. doi:10.1306/06301010047.
  • Wang, J., and S. Zhang. 2018. Pore structure differences of the extra-low permeability sandstone reservoirs and the causes of low resistivity oil layers: A case study of Block Yanwumao in the middle of Ordos Basin, NW China. Petroleum Exploration & Development 45 (2):273–80. doi:10.1016/S1876-3804(18)30030-2.
  • Wyllie, M. R. J., A. R. Gregory, and L. W. Gardner. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70. doi:10.1190/1.1438217.
  • Yin, H. 1992. Acoustic velocity and attenuation of rocks: Isotropy, intrinsic anisotropy, and stress induced anisotropy. Doctoral dissertation, Department of Geophysics, School of Earth Sciences, Standford Univ.
  • Zhu, Q., Q. Xiao, Y. Meng, Y. Zuo, X. Cheng, and Y. Zhang. 2019. Experimental investigations into stress sensitivity in three Chinese coal samples by NMR. Energy Sources Part A-recovery Utilization and Environmental Effects 43. doi:10.1080/15567036.2019.1644398

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.