231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Uniaxial compressive strength estimation based on the primary wave velocity in coal: considering scale effect and anisotropy

ORCID Icon, , , &
Received 30 Jan 2020, Accepted 02 Oct 2020, Published online: 19 Oct 2020

References

  • Abbas, N., N. Jamil, and N. Hussain. 2016. Assessment of key parameters in tannery sludge management: A prerequisite for energy recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:2656–63. doi:10.1080/15567036.2015.1117544.
  • Abbaszadeh Shahri, A., S. Larsson, and F. Johansson. 2016. Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test. Innovative Infrastructure Solutions 1:17. doi:10.1007/s41062-016-0016-9.
  • Behn, M. D., and P. B. Kelemen. 2003. Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochemistry, Geophysics, Geosystems 4:1–57. doi:10.1029/2002GC000393.
  • Bieniawski, Z. T. 1968. The effect of specimen size on compressive strength of coal. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 5:325–35. doi:10.1016/0148-9062(68)90004-1.
  • Chen, N., J. Kemeny, Q. Jiang, and Z. Pan. 2017. Automatic extraction of blocks from 3D point clouds of fractured rock. Computers & Geosciences 109:149–61. doi:10.1016/j.cageo.2017.08.013.
  • Çobanoğlu, İ., and S. B. Çelik. 2008. Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bulletin of Engineering Geology and the Environment 67:491–98. doi:10.1007/s10064-008-0158-x.
  • Cuevas, A., M. Febrero, and R. Fraiman. 2004. An anova test for functional data. Computational Statistics & Data Analysis 47:111–22. doi:10.1016/j.csda.2003.10.021.
  • Dehghan, S., G. Sattari, S. Chehreh Chelgani, and M. Aliabadi. 2010. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Mining Science and Technology (China) 20:41–46. doi:10.1016/S1674-5264(09)60158-7.
  • Diamantis, K., E. Gartzos, and G. Migiros. 2009. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Engineering Geology 108:199–207. doi:10.1016/j.enggeo.2009.07.002.
  • Ding, P., B. Di, D. Wang, J. Wei, and X. Li. 2014. P and S wave anisotropy in fractured media: Experimental research using synthetic samples. Journal of Applied Geophysics 109:1–6. doi:10.1016/j.jappgeo.2014.07.005.
  • Ding, P., B. Di, D. Wang, J. Wei, and L. Zeng. 2018. P- and S-wave velocity and anisotropy in saturated rocks with aligned cracks. Wave Motion 81:1–14. doi:10.1016/j.wavemoti.2018.05.001.
  • Entwisle, D. C., P. R. N. Hobbs, L. D. Jones, D. Gunn, and M. G. Raines. 2005. The relationships between effective porosity, uniaxial compressive strength and sonic velocity of intact borrowdale volcanic group core samples from sellafield. Geotechnical & Geological Engineering 23:793–809. doi:10.1007/s10706-004-2143-x.
  • Fan, D., C. Pang, J. Kim, S. Jon, and X. Gu. 2019. Forecasting the self-sufficiency rate of China’s energy by the hybrid gray models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–20. doi:10.1080/15567036.2019.1667458.
  • Fatima, A., M. Zafar, M. Ahmad, S. Sultana, and M. I. Ali. 2017. Parametric characterization and statistical optimization of Argemone ochroleuca (Mexican Poppy) methyl esters as a renewable source of energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:1963–69. doi:10.1080/15567036.2017.1391896.
  • Gao, F., D. Stead, and H. Kang. 2014. Numerical investigation of the scale effect and anisotropy in the strength and deformability of coal. International Journal of Coal Geology 136:25–37. doi:10.1016/j.coal.2014.10.003.
  • González-Rodríguez, G., A. Colubi, and M. Á. Gil. 2012. Fuzzy data treated as functional data: A one-way ANOVA test approach. Computational Statistics & Data Analysis 56:943–55. doi:10.1016/j.csda.2010.06.013.
  • Górecki, T., and Ł. Smaga. 2015. A comparison of tests for the one-way ANOVA problem for functional data. Computational Statistics 30:987–1010. doi:10.1007/s00180-015-0555-0.
  • Han, Y.-F., X.-Y. Cheng, X.-R. Liu, -L.-L. Zhao, J. He, and J. Miao. 2019. Extraction and numerical simulation of gas–water flow in low permeability coal reservoirs based on a pore network model. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2019.1648591.
  • Hu, -B.-B., Z.-L. Lin, Y. Chen, G.-K. Zhao, J.-E. Su, Y.-J. Ou, R. Liu, T. Wang, Y.-B. Yu, and C.-M. Zou. 2020. Evaluation of biomass briquettes from agricultural waste on industrial application of flue-curing of tobacco. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–12. doi:10.1080/15567036.2020.1796852.
  • Jamshidi, A., M. R. Nikudel, M. Khamehchiyan, and R. Z. Sahamieh. 2015. The effect of specimen diameter size on uniaxial compressive strength, P-wave velocity and the correlation between them. Geomechanics and Geoengineering 11:1–7. doi:10.1080/17486025.2015.1006264.
  • Kahraman, S. 2001. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences 38:981–94. doi:10.1016/S1365-1609(01)00039-9.
  • Khandelwal, M., and T. N. Singh. 2009. Correlating static properties of coal measures rocks with P-wave velocity. International Journal of Coal Geology 79:55–60. doi:10.1016/j.coal.2009.01.004.
  • Kim, H., J. W. Cho, I. Song, and K. B. Min. 2012. Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist in Korea. Engineering Geology 147–148:68–77. doi:10.1016/j.enggeo.2012.07.015.
  • Kim, K. Y., L. Zhuang, H. Yang, H. Kim, and K.-B. Min. 2016. Strength anisotropy of berea sandstone: Results of X-ray computed tomography, compression tests, and discrete modeling. Rock Mechanics and Rock Engineering 49:1201–10. doi:10.1007/s00603-015-0820-0.
  • Li, B., X. Tan, F. Wang, P. Lian, W. Gao, and Y. Li. 2017. Fracture and vug characterization and carbonate rock type automatic classification using X-ray CT images. Journal of Petroleum Science and Engineering 153:88–96. doi:10.1016/j.petrol.2017.03.037.
  • Li, Z., D. Wang, D. Lv, Y. Li, H. Liu, P. Wang, Y. Liu, J. Liu, and D. Li. 2018. The geologic settings of Chinese coal deposits. International Geology Review 60:548–78. doi:10.1080/00206814.2017.1324327.
  • Liu, J., G. Jia, J. Gao, J. Hu, and S. Chen. 2020. NMR study on pore structure and permeability of different layers of deep low-rank coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2020.1742254.
  • Mathews, J. P., Q. P. Campbell, H. Xu, and P. Halleck. 2017. A review of the application of X-ray computed tomography to the study of coal. Fuel 209:10–24. doi:10.1016/j.fuel.2017.07.079.
  • McCann, D. M., M. G. Culshaw, and K. J. Northmore. 1990. Rock mass assessment from seismic measurements. Geological Society, London, Engineering Geology Special Publications 6:257 LP– 266. doi:10.1144/GSL.ENG.1990.006.01.28.
  • McNally, G. H. 1987. Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration 24:381–95. doi:10.1016/0016-7142(87)90008-1.
  • Minaeian, B., and K. Ahangari. 2013. Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arabian Journal of Geosciences 6:1925–31. doi:10.1007/s12517-011-0460-y.
  • Pan, J., Z. Meng, Q. Hou, Y. Ju, and Y. Cao. 2013. Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition. Journal of Structural Geology 54:129–35. doi:10.1016/j.jsg.2013.07.008.
  • Pappalardo, G. 2015. Correlation between P-wave velocity and physical–mechanical properties of intensely jointed dolostones, Peloritani mounts, NE Sicily. Rock Mechanics and Rock Engineering 48:1711–21. doi:10.1007/s00603-014-0607-8.
  • Petchsingto, T., and Z. T. Karpyn. 2009. Deterministic modeling of fluid flow through a CT-scanned fracture using computational fluid dynamics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31:897–905. doi:10.1080/15567030701752842.
  • Poulsen, B. A., and D. P. Adhikary. 2013. A numerical study of the scale effect in coal strength. International Journal of Rock Mechanics and Mining Sciences 63:62–71. doi:10.1016/j.ijrmms.2013.06.006.
  • Sharma, P. K., and T. N. Singh. 2008. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment 67:17–22. doi:10.1007/s10064-007-0109-y.
  • Song, H., Y. Jiang, D. Elsworth, Y. Zhao, J. Wang, and B. Liu. 2018a. Scale effects and strength anisotropy in coal. International Journal of Coal Geology 195:37–46. doi:10.1016/j.coal.2018.05.006.
  • Song, H., Y. Zhao, Y. Jiang, and J. Wang. 2018b. Scale effect on the anisotropy of acoustic emission in coal. Shock and Vibration 2018:1–11. doi:10.1155/2018/8386428.
  • Song, H., Y. Zhao, Y. Jiang, and X. Zhang. 2017. Influence of heterogeneity on the failure characteristics of coal under uniaxial compression condition. Journal of China Coal Society 42:3125–32.
  • Suo, Y., Z. Chen, S. S. Rahman, and X. Chen. 2020. Experimental study on mechanical and anisotropic properties of shale and estimation of uniaxial compressive strength. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2020.1779873.
  • Vilhelm, J., V. Rudajev, R. Živor, T. Lokajíček, and Z. Pros. 2010. Influence of crack distribution of rocks on P‐wave velocity anisotropy–a laboratory and field scale study. Geophysical Prospecting 58:1099–110.
  • Wen, Z., X. Wang, L. Chen, G. Lin, and H. Zhang. 2017. Size effect on acoustic emission characteristics of coal-rock damage evolution. Advances in Materials Science and Engineering 2017:3472485. doi:10.1155/2017/3472485.
  • Xu, J., C. Zhai, L. Qin, and G. Yu. 2017. Evaluation research of the fracturing capacity of non-explosive expansion material applied to coal-seam roof rock. International Journal of Rock Mechanics and Mining Sciences 94:103–11. doi:10.1016/j.ijrmms.2017.03.004.
  • Yang, B., L. Xue, and K. Zhang. 2018. X-ray micro-computed tomography study of the propagation of cracks in shale during uniaxial compression. Environmental Earth Sciences 77:652. doi:10.1007/s12665-018-7843-2.
  • Yang, J., J. Dai, C. Yao, S. Jiang, C. Zhou, and Q. Jiang. 2020. Estimation of rock mass properties in excavation damage zones of rock slopes based on the Hoek-Brown criterion and acoustic testing. International Journal of Rock Mechanics and Mining Sciences 126:104192. doi:10.1016/j.ijrmms.2019.104192.
  • Yasar, E., and Y. Erdogan. 2004. Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences 41:871–75. doi:10.1016/j.ijrmms.2004.01.012.
  • Yun, T. S., Y. J. Jeong, K. Y. Kim, and K. B. Min. 2013. Evaluation of rock anisotropy using 3D X-ray computed tomography. Engineering Geology 163:11–19. doi:10.1016/j.enggeo.2013.05.017.
  • Zhang, J.-T., and X. Liang. 2014. One-way anova for functional data via globalizing the pointwise F-test. Scandinavian Journal of Statistics 41:51–71. doi:10.1111/sjos.12025.
  • Zhang, Y., M. Lebedev, Y. Jing, H. Yu, and S. Iglauer. 2019. In-situ X-ray micro-computed tomography imaging of the microstructural changes in water-bearing medium rank coal by supercritical CO2 flooding. International Journal of Coal Geology 203:28–35. doi:10.1016/j.coal.2019.01.002.
  • Zhang, Z., Q. Jiang, C. Zhou, and X. Liu. 2014. Strength and failure characteristics of Jurassic Red-Bed sandstone under cyclic wetting–drying conditions. Geophysical Journal International 198:1034–44. doi:10.1093/gji/ggu181.
  • Zhao, J., X. B. Zhao, and J. G. Cai. 2006. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour. International Journal of Rock Mechanics and Mining Sciences 43:776–88. doi:10.1016/j.ijrmms.2005.12.007.
  • Zhao, Y., H. Song, S. Liu, C. Zhang, L. Dou, and A. Cao. 2019. Mechanical anisotropy of coal with considerations of realistic microstructures and external loading directions. International Journal of Rock Mechanics and Mining Sciences 116:111–21. doi:10.1016/j.ijrmms.2019.03.005.
  • Zheng, K. H., K. D. Gao, Z. J. Yang, and Z. Y. Wang. 2020. Morphological characterization of crushed coal gangue by micro X-ray computed tomography scanning. International Journal of Coal Preparation and Utilization 1–20. doi:10.1080/19392699.2020.1732946.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.