125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An experimental assessment of bio-mixed-phase change material in a lightweight compartment and its potential as latent energy storage in north-east climate of India

ORCID Icon & ORCID Icon
Received 23 Jul 2020, Accepted 07 Nov 2020, Published online: 21 Dec 2020

References

  • Chang, S. J., S. Wi, S.-G. Jeong, and S. Kim. 2016. Thermal performance evaluation of macro-packed phase change materials (PCMs) using heat transfer analysis device. Energy and Buildings 117:120–27. doi:10.1016/j.enbuild.2016.02.014.
  • Faraj, K., J. Faraj, F. Hachem, H. Bazzi, M. Khaled, and C. Castelain. 2019. Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates. Applied Thermal Engineering 158:113778. doi:10.1016/j.applthermaleng.2019.113778.
  • Fateh, A., D. Borelli, H. Weinläder, and F. Devia. 2019. Cardinal orientation and melting temperature effects for PCM-enhanced light-walls in different climates. Sustainable Cities and Society 51:101766. doi:10.1016/j.scs.2019.101766.
  • Gobinath, S., G. Senthilkumar, and N. Beemkumar. 2018. Comparative study of room temperature control in buildings with and without the use of PCM in walls. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (14):1765–71. doi:10.1080/15567036.2018.1486910.
  • Hawes, D. W., and D. Feldman. 1993. Latent heat storage in building materials. Energy and Buildings 20 (1):77–86. doi:10.1016/0378-7788(93)90040-2.
  • Hittle, D. C. (2002) Phase change materials in floor tiles for thermal energy storage. U.S. Dept. of Energy project report. Award no. DE-FC26-00NT40999 https://www.osti.gov/servlets/purl/820428
  • Huang, J., L. Henglin, W. Feng, Q. Pei, and Z. Huang. 2020. Determination of economical thermal insulation thickness for a building wall with two parallel structures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (4):399–409. doi:10.1080/15567036.2019.1587086.
  • Kahwaji, S., and M. A. White. 2019. Edible oils as practical phase change materials for thermal energy storage. Applied Sciences 9 (8):1627. doi:10.3390/app9081627.
  • Kim, S., and L. Drzal. 2009. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Solar Energy Materials and Solar Cells 93 (1):136–42. doi:10.1016/j.solmat.2008.09.010.
  • Koçyiğit, F., F. Ünal, and Ş. Koçyiğit. 2020. Experimental analysis and modeling of the thermal conductivities for a novel building material providing environmental transformation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (24):3063–79. doi:10.1080/15567036.2020.1811811.
  • Kuznik, F., K. Johannes, and D. David. 2015. “Integrating phase change materials (PCMs) in thermal energy storage systems for buildings.” Advances in Thermal Energy Storage Systems Woodhead Publishing, 325–53. doi:10.1533/9781782420965.2.325.
  • Lee, H., S.-G. Jeong, S. Chang, Y. Kang, S. Wi, S. Kim, et al. 2016. “Thermal performance evaluation of fatty acid ester and paraffin based mixed SSPCMs using exfoliated graphite nanoplatelets (xGnP).” Applied Sciences. 6(4):106. doi:10.3390/app6040106.
  • Li, Y., J. Zhou, E. Long, and X. Meng. 2018. Experimental study on thermal performance improvement of building envelopes by integrating with phase change material in an intermittently heated room. Sustainable Cities and Society 38:607–15. doi:10.1016/j.scs.2018.01.040.
  • Li, Z. X., A. A. A. A. Al-Rashed, M. Rostamzadeh, R. Kalbasi, A. Shahsavar, and M. Afrand. 2019. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. Energy Conversion and Management 195:43–56. doi:10.1016/j.enconman.2019.04.075.
  • Liu, Z., Z. (. Yu, T. Yang, D. Qin, S. Li, G. Zhang, F. Haghighat, and M. M. Joybari. 2018. A review on macro-encapsulated phase change material for building envelope applications. Building and Environment 144:281–94. doi:10.1016/j.buildenv.2018.08.030.
  • Mahlia, T. M. I., T. J. Saktisahdan, A. Jannifar, M. H. Hasan, H. S. C. Matseelar, et al. 2014. A review of available methods and development on energy storage; technology update. Renewable and Sustainable Energy Reviews 33:532–45. doi:10.1016/j.rser.2014.01.068.
  • Meng, E.,  J. Wang, H. Yu, R. Cai, Y. Chen, and B. Zhou. 2019.  Experimental study of the thermal protection performance of the high reflectivity-phase change material (PCM) roof in summer, Building and Environment, Volume 164, 2019, 106381, ISSN 0360-1323, doi:10.1016/j.buildenv.2019.106381.
  • Oueslati, H., and S. B. Mabrouk. 2019. Techno-economic analysis of an on-grid PV/Wind/Battery hybrid power system used for electrifying building. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1683097.
  • Ouhaibi, S., A. Gounni, N. Belouaggadia, M. Ezzine, and R. Lbibb. 2020. Energy, environmental and economic performance of an external roof for a sustainable building. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1796847.
  • Rathore, P., K. Singh, and S. K. Shukla. 2019. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials 225:723–44. doi:10.1016/j.conbuildmat.2019.07.221.
  • Rathore, P., K. Singh, and S. K. Shukla. 2020. An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings. Renewable Energy 149:1300–13. doi:10.1016/j.renene.2019.10.130.
  • Salyer, I. O., A. K. Sircar, and A. Kumar (1995) Advanced phase change materials technology: Evaluation in lightweight solite hollow-core building blocks. In: Proceedings of the 30th intersociety energy conversion engineering conference, Orlando, pp 217–22 https://www.osti.gov/biblio/163280
  • Shahbaz, M., H. Mallick, M. K. Mahalik, P. Sadorsky, et al. 2016. The role of globalization on the recent evolution of energy demand in India: Implications for sustainable development. Energy Economics 55:52–68. doi:10.1016/j.eneco.2016.01.013.
  • Sharma, A., V. V. Tyagi, C. R. Chen, D. Buddhi, et al. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13.2 (2):318–45. doi:10.1016/j.rser.2007.10.005.
  • Silalahi, A. O., et al. 2017. “Thermophysical parameters of organic PCM coconut oil from T-history method and its potential as thermal energy storage in Indonesia.” IOP Conference Series: Materials Science and Engineering 214(1):012034. IOP Publishing. doi:10.1088/1742-6596/1204/1/012055.
  • Silva, T., R. Vicente, F. Rodrigues, A. Samagaio, C. Cardoso, et al. 2015. Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Applied Thermal Engineering 84:246–56. doi:10.1016/j.applthermaleng.2015.03.059.
  • Solé, A., L. Miró, C. Barreneche, I. Martorell, L. F. Cabeza, et al. 2013. Review of the T -history method to determine thermophysical properties of phase change materials (PCM). Renewable and Sustainable Energy Reviews 26:425–36. doi:10.1016/j.rser.2013.05.066.
  • Telkes, M. 1947. Solar house heating—a problem of heat storage. J. Heat Ventilating 44:68–75. https://www.osti.gov/biblio/5134730.
  • Tyagi, V. V., and D. Buddhi. 2007. PCM thermal storage in buildings: A state of art. Renewable and Sustainable Energy Reviews 11 (6):1146–66. doi:10.1016/j.rser.2005.10.002.
  • Valizadeh, S., M. Ehsani, and M. T. Angji. 2019. Development and thermal performance of wood-HPDE- PCM nanocapsule floor for passive cooling in building. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (17):2114–27. doi:10.1080/15567036.2018.1550125.
  • Zalewski, L., S. Lassue, B. Duthoit, and M. Butez. 2002. Study of solar walls, validating a simulation model. Building and Environment 37 (1):109–21. doi:10.1016/S0360-1323(00)00072-X.
  • Zhang, M., M. A. Medina, and J. B. King. 2005. Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings. International Journal of Energy Research 29 (9):795–809. doi:10.1002/er.1082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.