169
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Using artificial neural networks for the intelligent estimation of selectivity index and metallurgical responses of a sample coal bioflotation by rhamnolipid biosurfactants

ORCID Icon & ORCID Icon
Received 13 Aug 2020, Accepted 21 Nov 2020, Published online: 11 Dec 2020

References

  • Ahmadi, M. A., M. Ebadi, A. Shokrollahi, and S. M. J. Majidi. 2013. Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Applied Soft Computing 13 (2):1085–98. doi:10.1016/j.asoc.2012.10.009.
  • Akkaya, A. V. 2013. Predicting coal heating values using proximate analysis via a neural network approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (3):253–60. doi:10.1080/15567036.2010.509090.
  • Altıner, M., and Y. Kuvvetli. 2017. Prediction of grinding behavior of low-grade coal based on its moisture loss by neural networks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (12):1250–57. doi:10.1080/15567036.2017.1320692.
  • Anderson, D., and G. McNeill. 1992. Artificial neural networks technology, Kaman Sciences Corporation, Technical report, New York, NY.
  • Argyros, I. K., and Á. A. Magreñán. 2014. Extending the applicability of Gauss–Newton method for convex composite optimization on Riemannian manifolds. Applied Mathematics and Computation 249:453–67. doi:10.1016/j.amc.2014.09.119.
  • Atashpaz-Gargari, E., and C. Lucas. 2017. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of 2007 IEEE Congress on Evolutionary Computation, Singapore, Singapore, September 25-28. doi: 10.1109/CEC.2007.4425083.
  • Bodagh, A., H. Khoshdast, H. Sharafi, H. S. Zahiri, and K. Akbari Noghabi. 2013. Removal of cadmium(II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as ion collector. Industrial & Engineering Chemistry Research 52 (10):3910–17. doi:10.1021/ie400085t.
  • Borah, D., and R. N. S. Yadav. 2017. Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain. Egyptian Journal of Petroleum 26 (1):181–88. doi:10.1016/j.ejpe.2016.02.005.
  • Boveiri Shami, R., V. Shojaei, and H. Khoshdast. 2019. Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. Journal of Environmental Management 231:1182–92. doi:10.1016/j.jenvman.2018.03.126.
  • Burges, C., T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. 2005. Learning to rank using gradient descent. In Proceedings of the 22nd International Conference on Machine Learning. Germany: University of Bonn, August 7–11. doi: 10.1145/1102351.1102363.
  • Clerc, M., and J. Kennedy. 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 (1):58–73. doi:10.1109/4235.985692.
  • Cohen, R., and D. Exerowa. 2007. Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in Colloid and Interface Science 134–135:24–34. doi:10.1016/j.cis.2007.04.018.
  • De Villiers, J., and E. Barnard. 1993. Backpropagation neural nets with one and two hidden layers. IEEE Transactions on Neural Networks 4 (1):136–41. doi:10.1109/72.182704.
  • Fazaelipoor, M. H., H. Khoshdast, and M. Ranjbar. 2010. Coal flotation using a biosurfactant from Pseudomonas aeruginosa as a frother. Korean Journal of Chemical Engineering 27:1527–31. doi:10.1007/s11814-010-0223-6.
  • Geetha, S. J., I. M. Banat, and S. J. Joshi. 2018. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis and Agricultural Biotechnology 14:23–32. doi:10.1016/j.bcab.2018.01.010.
  • Gorucu, F. B. 2004. Artificial neural network modeling for forecasting gas consumption. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 26 (3):299–307. doi:10.1080/00908310490256626.
  • Guo, Y. P., Y. Y. Hu, R. R. Gu, and H. Lin. 2009. Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. Journal of Colloid and Interface Science 331 (2):356–63. doi:10.1016/j.jcis.2008.11.039.
  • Heo, S., and J. H. Lee. 2018. Fault detection and classification using artificial neural networks. IFAC-PapersOnLine 51 (18):470–75. doi:10.1016/j.ifacol.2018.09.380.
  • Ishigami, Y. 2003. Characterization and functionalization of biosurfactants. In Structure-performance relationships in surfactants, ed. K. Esumi and M. Ueno, 285–308. 2nd ed. New York, NY: Marcel Dekker Inc.
  • Kennedy, J. 1997. The particle swarm: Social adaptation of knowledge. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, USA, April 13–16. doi: 10.1109/ICEC.1997.592326.
  • Khoshdast, H. 2019. Practical problems in froth flotation. Tehran: Hormozgan University Press.
  • Khoshdast, H., H. Abbasi, A. Sam, and K. A. Noghabi. 2012a. Frothability and surface behavior of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa MA01. Biochemical Engineering Journal 64:127–34. doi:10.1016/j.bej.2011.10.015.
  • Khoshdast, H., and A. Sam. 2012. An efficiency evaluation of iron concentrates flotation using rhamnolipid biosurfactant as a frothing reagent. Environmental Engineering Research 17 (1):9–15. doi:10.4491/eer.2012.17.1.009.
  • Khoshdast, H., A. Sam, and Z. Manafi. 2011b. A surface activity comparison between rhamnolipid biosurfactants and industrial flotation frothers. In Proceedings of the 1st National Copper Conference, Kerman, Iran.
  • Khoshdast, H., A. Sam, and Z. Manafi. 2012b. The use of rhamnolipid biosurfactants as a frothing agent and a sample copper ore response. Minerals Engineering 26:41–49. doi:10.1016/j.mineng.2011.10.010.
  • Khoshdast, H., A. Sam, H. Vali, and K. A. Noghabi. 2011a. Effect of rhamnolipid biosurfactants on performance of coal and mineral flotation. International Biodeterioration & Biodegradation 65:1238–43. doi:10.1016/j.ibiod.2011.10.003.
  • Kim, G., J. Choi, R. A. Silva, Y. Song, and H. Kim. 2017. Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus.. Hydrometallurgy 168:94–102. doi:10.1016/j.hydromet.2016.06.029.
  • Lopez, L. Y., A. G. Merma, M. L. Torem, and G. H. Pino. 2015. Fundamental aspects of hematite flotation using the bacterial strain Rhodococcus ruber as bioreagents. Mineral Engineering 75:63–69. doi:10.1016/j.mineng.2014.12.022.
  • Lourakis, M. I. A. 2005. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Foundation of Research and Technology 4 (1):1–6.
  • Mahmoodabadi, M., H. Khoshdast, and V. Shojaei. 2019. Efficient dye removal from aqueous solutions using rhamnolipid biosurfactants by foam flotation. Iranian Journal of Chemistry and Chemical Engineering 38 (4):127–40. doi:1021-9986/2019/4/127-140.
  • Merma, A. G., C. A. C. Olivera, R. R. Hacha, M. L. Torem, and B. F. Santos. 2019. Optimization of hematite and quartz bioflotation by an artificial neural network (ANN). Journal of Materials Research and Technology 8 (3):3076–87. doi:10.1016/j.jmrt.2019.02.022.
  • Montgomery, D. C. 2017. Design and analysis of experiments. New York, NY: John Wiley & Sons.
  • Nematollahi, H. 2002. Mineral processing. Tehran: Tehran University Press.
  • Özdemir, G., and U. Malayoglu. 2004. Wetting characteristics of aqueous rhamnolipids solutions. Colloids and Surfaces. B, Biointerfaces 39 (1–2):1–7. doi:10.1016/j.colsurfb.2004.08.006.
  • Ozdeniz, A. H., and N. Yilmaz. 2009. Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10–18 mm coal grain sizes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31 (16):1425–35. doi:10.1080/15567030802092817.
  • Rezaei, B. 2015. Flotation technology. Tehran: Nahre Danesh Press.
  • Salmani Nuri, O., E. Allahkarami, M. Irannajad, and A. Abdollahzadeh. 2017. Estimation of selectivity index and separation efficiency of copper flotation process using ANN model. Geosystem Engineering 20 (1):41–50. doi:10.1080/12269328.2016.1220334.
  • Sánchez, M., F. J. Aranda, M. J. Espuny, A. Marqués, J. A. Teruel, Á. Manresa, and A. Ortiz. 2007. Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. Journal of Colloid and Interface Science 307 (1):246–53. doi:10.1016/j.jcis.2006.11.041.
  • Shojaei, V., and H. Khoshdast. 2018. Efficient chromium removal from aqueous solutions by precipitate flotation using rhamnolipid biosurfactants. Physicochemical Problems of Mineral Processing 54 (3):1014–25. doi:10.5277/ppmp18103.
  • Simpson, P. K. 1990. Artificial neural system-foundation, paradigm, application and implementations. New York, NY: Pergamon.
  • Singhi, S. K., and H. Liu. 2006. Feature subset selection bias for classification learning. In Proceedings of the 23rd International Conference on Machine learning, Pittsburgh, USA, June 25–29. doi: 10.1145/1143844.1143951.
  • Smith, R. W., and M. Misra. 1991. Mineral bioprocessing. New York, NY: The Minerals, Metals & Materials Society.
  • Sobouti, A., F. S. Hoseinian, B. Rezai, and S. Jalili. 2019. The lead recovery prediction from lead concentrate by an artificial neural network and particle swarm optimization. Geosystem Engineering 22 (6):319–27. doi:10.1080/12269328.2019.1644205.
  • Zhang, Q. J., and K. C. Gupta. 2000. Neural networks for RF and microwave design. New York, NY: Artech House Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.