264
Views
1
CrossRef citations to date
0
Altmetric
Review

Improvement in performance of CI engine using various techniques with alternative fuel

ORCID Icon, ORCID Icon & ORCID Icon
Received 30 Sep 2020, Accepted 10 Dec 2020, Published online: 22 Jan 2021

References

  • Abdalla, A. N., R. A. Bakar, H. Tao, D. Ramasamy, K. Kadirgama, B. Fooj, S. Sivaraos, and S. Sivaraos. 2020. Effect of swirl at intake manifold on engine performance using ethanol fuel blend. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (1):73–88. doi:10.1080/15567036.2019.1587056.
  • Agarwal, A. K., A. Dhar, J. G. Gupta, W. I. Kim, K. Choi, C. S. Lee, and S. Park. 2015. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management 91:302–14. doi:10.1016/j.enconman.2014.12.004.
  • Agarwal, A. K., A. Dhar, J. G. Gupta, W. I. Kim, C. S. Lee, and S. Park. 2014. Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common-rail direct-injection diesel engine. Applied Energy 130:212–21. doi:10.1016/j.apenergy.2014.05.041.
  • Agarwal, A. K., A. Dhar, D. K. Srivastava, R. K. Maurya, and A. P. Singh. 2013. Effect of fuel injection pressure on diesel particulate size and number distribution in a CRDI single-cylinder research engine. Fuel 107:84–89. doi:10.1016/j.fuel.2013.01.077.
  • Agarwal, A. K., S. Park, A. Dhar, C. S. Lee, S. Park, T. Gupta, and N. K. Gupta. 2018. Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines. Journal of Energy Resources Technology 140:12. doi:10.1115/1.4040584.
  • Al-Dawody, M. F., and S. K. Bhatti. 2013. Optimization strategies to reduce the biodiesel NOx effect in diesel engine with experimental verification. Energy Conversion and Management 68:96–104. doi:10.1016/j.enconman.2012.12.025.
  • Aleyasin, S. S., N. Fathi, M. F. Tachie, P. Vorobieff, and M. Koupriyanov. 2018. On the development of incompressible round and equilateral triangular jets due to Reynolds number variation. Journal of fluids engineering 140 (11):111202. doi:10.1115/1.4040031.
  • Aleyasin, S. S., M. F. Tachie, and M. Koupriyanov. 2017. “Statistical Properties of Round, Square and Elliptic Jets at Low and Moderate Reynolds Numbers,”. ASME J. Fluids Eng. 139 (10):p. 101206. doi:10.1115/1.4036824.
  • Amini, G., and A. Dolatabadi. 2011. Capillary instability of elliptic liquid jets. Physics of Fluids 23 (8):084109. doi:10.1063/1.3626550.
  • Amiri, M., and A. Shirneshan. 2020. Effects of air swirl on the combustion and emissions characteristics of a cylindrical furnace fueled with diesel-biodiesel-n-butanol and diesel-biodiesel-methanol blends. Fuel 268:117295. doi:10.1016/j.fuel.2020.117295.
  • An, H., W. M. Yang, S. K. Chou, and K. J. Chua. 2012. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions. Applied Energy 99:363–71. doi:10.1016/j.apenergy.2012.05.049.
  • Anis, S., and G. N. Budiandono. 2019. Investigation of the effects of preheating temperature of biodiesel-diesel fuel blends on spray characteristics and injection pump performances. Renewable energy 140:274–80. doi:10.1016/j.renene.2019.03.062.
  • Ashok, B., K. Nanthagopal, V. Anand, K. M. Aravind, A. K. Jeevanantham, and S. Balusamy. 2019. Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel 235:363–73. doi:10.1016/j.fuel.2018.07.126.
  • Atabani, A. E., A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and H. Fayaz. 2013. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and sustainable energy reviews 18:211–45. doi:10.1016/j.rser.2012.10.013.
  • Azad, M., W. R. Quinn, and D. Groulx. 2012. Mixing in turbulent free jets issuing from isosceles triangular orifices with different apex angles. Experimental thermal and fluid science 39:237–51. doi:10.1016/j.expthermflusci.2012.01.028.
  • Bari, S., and S. Hossain. 2019. Performance and emission analysis of a diesel engine running on palm oil diesel (POD). Energy Procedia 160:92–99. doi:10.1016/j.egypro.2019.02.123.
  • Bari, S., S. N. Hossain, and I. Saad. 2020. A review on improving airflow characteristics inside the combustion chamber of CI engines to improve the performance with higher viscous biofuels. Fuel 264:116769. doi:10.1016/j.fuel.2019.116769.
  • Bari, S., P. J. G. Johansen, and A. J. T. Alherz. 2015. Simulation of improvements to in-cylinder mixing of biodiesel with air by incorporating guide vanes into the air intake system. Procedia Engineering 105:480–87. doi:10.1016/j.proeng.2015.05.079.
  • Bari, S., and I. Saad. 2013. CFD modelling of the effect of guide vane swirl and tumble device to generate better in-cylinder air flow in a CI engine fuelled by biodiesel. Computers & fluids 84:262–69. doi:10.1016/j.compfluid.2013.06.011.
  • Bari, S., and I. Saad. 2014. Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment. Applied Energy 136:431–44. doi:10.1016/j.apenergy.2014.09.051.
  • Bari, S., and I. Saad. 2015. Optimization of vane numbers through simulation and experiment, and investigation of the effect on the performance and emissions of a CI (compression ignition) engine run with biodiesel. Energy 79:248–63. doi:10.1016/j.energy.2014.11.011.
  • Bari, S., and I. Saad. 2016. Simulation and experimental investigation of guide vane length to improve the performance of a diesel engine run with biodiesel. Journal of Engineering for Gas Turbines and Power 138 (11):11. doi:10.1115/1.4033509.
  • Baumgarten, C. 2006. Mixture formation in internal combustion engines.. Germany: Springer Science & Business Media.
  • Benajes, J., S. Molina, J. M. Garcia, and J. M. Riesco. 2004. The effect of swirl on combustion and exhaust emissions in heavy-duty diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 218 (10):1141–48. doi:10.1177/095440700421801009.
  • Bharathi, V. P., and S. G. Prasanthi. 2012. Experimental investigation on the effect of air swirl on performance and emissions characteristics of a diesel engine fueled with karanja biodiesel. Int. J. Engineering Research and Development 2:8–13.
  • Bogey, C., and C. Bailly. 2006. Large eddy simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation. Physics of Fluids 18 (6):065101. doi:10.1063/1.2204060.
  • Boggavarapu, P., and R. V. Ravikrishna. 2013. A review on atomization and sprays of biofuels for IC engine applications. International journal of spray and combustion dynamics 5 (2):85–121. doi:10.1260/1756-8277.5.2.85.
  • Boog, J. H. F., E. L. C. Silveira, L. B. De Caland, and M. Tubino. 2011. Determining the residual alcohol in biodiesel through its flash point. Fuel 90(2):905–07. 25. Totten G. Fuels and lubricants handbook: technology, properties, perfor- mance, and testing. United States: ASTM International; 2003. . doi:10.1016/j.fuel.2010.10.020.
  • Boot, M. D., C. C. M. Luijten, L. M. T. Somers, U. Eguz, D. D. T. M. van Erp, A. Albrecht, and R. S. G. Baert (2009). Uncooled EGR as a means of limiting wall-wetting under early direct injection conditions (No. 2009-01-0665). SAE Technical Paper. Doi: 10.4271/2009-01-0665
  • Bousbaa, H., A. Sary, M. Tazerout, and A. Liazid. 2012. Investigations on a compression ignition engine using animal fats and vegetable oil as fuels. Journal of energy resources technology 134 (2). doi:10.1115/1.4005660.
  • Broatch, A., P. Olmeda, A. García, J. Salvador-Iborra, and A. Warey. 2017. Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy 119:1010–23. doi:10.1016/j.energy.2016.11.040.
  • Buswell, M. L., and C. L. Buswell(2005). Intake device for use with internal combustion engines, in, Google Patents.
  • Canakci, M., C. Sayin, A. N. Ozsezen, and A. Turkcan. 2009. Effect of injection pressure on the combustion, performance, and emission characteristics of a diesel engine fueled with methanol-blended diesel fuel. Energy & Fuels 23 (6):2908–20. doi:10.1021/ef900060s.
  • Capuano, D., M. Costa, S. Di Fraia, N. Massarotti, and L. Vanoli. 2017. Direct use of waste vegetable oil in internal combustion engines. Renewable and Sustainable Energy Reviews 69:759–70. doi:10.1016/j.rser.2016.11.016.
  • Carareto, N. D., C. Y. Kimura, E. C. Oliveira, M. C. Costa, and A. J. Meirelles. 2012. Flash points of mixtures containing ethyl esters or ethylic biodiesel and ethanol. Fuel 96:319–26. doi:10.1016/j.fuel.2012.01.025.
  • Channappagoudra, M. N., S. Thaned, N. R. Banapurmath, K. Ramesh, and G. Manavendra. 2013. Effect of swirl on DI diesel engine operated with honge biodiesel. International journal of engineering research and applications 3 (6):595–60.
  • Chauhan, B. S., N. Kumar, Y. Du Jun, and K. B. Lee. 2010. Performance and emission study of preheated Jatropha oil on medium capacity diesel engine. Energy 35 (6):2484–92. doi:10.1016/j.energy.2010.02.043.
  • Chen, P. C., W. C. Wang, W. L. Roberts, and T. Fang. 2013. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel 103:850–61. doi:10.1016/j.fuel.2012.08.013.
  • Choi, C. Y., and R. D. Reitz. 1999. An experimental study on the effects of oxygenated fuel blends and multiple injection strategies on DI diesel engine emissions. Fuel 78 (11):1303–17. doi:10.1016/S0016-2361(99)00058-7.
  • Czerwonatis, N., R. Eggers, and S. J. Ley. 2001. Disintegration of liquid jets and drop drag coefficients in pressurized nitrogen and carbon dioxide. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology. Diabetes care 24 (6):619–24. doi:10.2337/diacare.24.4.619.
  • Davanlou, A., J. D. Lee, S. Basu, and R. Kumar. 2015. Effect of viscosity and surface tension on breakup and coalescence of bicomponent sprays. Chemical engineering science 131:243–55. doi:10.1016/j.ces.2015.03.057.
  • Demirbas, A. 2007. Importance of biodiesel as transportation fuel. Energy policy 35 (9):4661–70. doi:10.1016/j.enpol.2007.04.003.
  • Deo, R. C., J. Mi, and G. J. Nathan. 2008. The influence of Reynolds number on a plane jet. Physics of Fluids 20 (7):075108. doi:10.1063/1.2959171.
  • Dhingra, B., S. Sharma, K. Vora, and B. Ashok. 2015. CFD Modeling of Advanced Swirl Technique at Inlet-Runner for Diesel Engine (No. 2015-26-0095). SAE Technical Paper. doi:10.4271/2015-26-0095.
  • Ejim, C. E., B. A. Fleck, and A. Amirfazli. 2007. Analytical study for atomization of biodiesels and their blends in a typical injector: surface tension and viscosity effects. Fuel 86 (10–11):1534–44. doi:10.1016/j.fuel.2006.11.006.
  • Ferguson, C. R., and A. T. Kirkpatrick. 2015. Internal combustion engines: applied thermosciences. John Wiley & Sons. ISBN:978-1-118-53331-4
  • Gautam, R., N. A. Ansari, P. Thakur, A. Sharma, and Y. Singh. 2019. Status of biofuel in India with production and performance characteristics : a review. International Journal of Ambient Energy 1–17. doi:10.1080/01430750.2019.1630298.
  • Genzale, C. L., L. M. Pickett, and S. Kook. 2010. Liquid penetration of diesel and biodiesel sprays at late-cycle post-injection conditions. SAE International Journal of Engines 3 (1):479–95. doi:10.4271/2010-01-0610.
  • Georjon, T. L., and R. D. Reitz. 1999. A drop-shattering collision model for multidimensional spray computations. Atomization and Sprays 9 (3):231–54. doi:10.1615/AtomizSpr.v9.i3.10.
  • Gumus, M., C. Sayin, and M. Canakci. 2012. The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel 95:486–94. doi:10.1016/j.fuel.2011.11.020.
  • Hashiehbaf, A., and G. P. Romano. 2013. Particle image velocimetry investigation on mixing enhancement of non-circular sharp edge nozzles. International journal of heat and fluid flow 44:208–21. doi:10.1016/j.ijheatfluidflow.2013.05.017.
  • Hawi, M., H. Kosaka, S. Sato, T. Nagasawa, A. Elwardany, and M. Ahmed. 2019. Effect of injection pressure and ambient density on spray characteristics of diesel and biodiesel surrogate fuels. Fuel 254:115674. doi:10.1016/j.fuel.2019.115674.
  • Hazar, H., and H. Aydin. 2010. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)–diesel blends. Applied Energy 87 (3):786–90. doi:10.1016/j.apenergy.2009.05.021.
  • Hazar, H., H. Sevinc, and S. Sap. 2019. Performance and emission properties of preheated and blended fennel vegetable oil in a coated diesel engine. Fuel 254:115677. doi:10.1016/j.fuel.2019.115677.
  • Heywood, J. B. 1988. Combustion engine fundamentals. 1ª Edição. Estados Unidos. Massachusetts, USA.
  • Ho, C. M., and E. Gutmark. 1987. Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. Journal of fluid mechanics 179:383–405. doi:10.1017/S0022112087001587.
  • Hoang, A. T. 2019. Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. Energy 171:795–808. doi:10.1016/j.energy.2019.01.076.
  • Hoang, A. T. 2020. Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI). Energy Sources, Part A. Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2020.1805048.
  • Hoang, A. T., and A. T. Le. 2019. A review on deposit formation in the injector of diesel engines running on biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (5):584–99. doi:10.1080/15567036.2018.1520342.
  • Hoang, A. T., A. T. Le, and V. V. Pham. 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244:159–75. doi:10.1016/j.fuel.2019.02.009.
  • Hoang, A. T., and V. T. Nguyen. 2017. Emission characteristics of a diesel engine fuelled with preheated vegetable oil and biodiesel. Philipp. J. Sci 146 (4):475–82.
  • Hoang, A. T., M. M. Noor, and X. D. Pham. 2018. Comparative analysis on performance and emission characteristic of diesel engine fueled with heated coconut oil and diesel fuel. International Journal of Automotive and Mechanical Engineerging 15(1):5110–25. Uni Malaysia Pahang Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia. doi:10.15282/ijame.15.1.2018.16.0395..
  • Hoang, A. T., and M. T. Pham. 2018. Influences of heating temperatures on physical properties, spray characteristics of bio-oils and fuel supply system of a conventional diesel engine. Int. J. Adv. Sci. Eng. Inf. Technol 8 (5):2231–40. doi:10.18517/ijaseit.8.5.5487.
  • Hoang, A. T., and V. V. Pham. 2019. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (5):611–25. doi:10.1080/15567036.2018.1520344.
  • Hoang, A. T., M. Tabatabaei, and M. Aghbashlo. 2020. A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (23):2923–43. doi:10.1080/15567036.2019.1623346.
  • Hoang, A. T., V. D. Tran, V. H. Dong, and A. T. Le. 2019. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. Journal of Marine Engineering & Technology 10(1080/20464177):1–9. 20191595355. doi:10.1080/20464177.2019.1595355.
  • Hoang, T. A., and V. Van Le. 2017. The Performance of a diesel engine fueled with diesel oil, biodiesel and preheated coconut oil. International Journal of Renewable Energy Development 6 (1):1. doi:10.14710/ijred.6.1.1-7.
  • Hong, J. G., K. W. Ku, S. R. Kim, and C. W. Lee. 2010. Effect of cavitation in circular nozzle and elliptical nozzles on the spray characteristic. Atomization and sprays 20 (10):10. doi:10.1615/AtomizSpr.v20.i10.40.
  • Hussain, F., and H. S. Husain. 1989. Elliptic jets. Part 1. Characteristics of unexcited and excited jets. Journal of fluid mechanics 208:257–320. doi:10.1017/S0022112089002843.
  • Indudhar, M. R., N. R. Banapurmath, K. Govinda Rajulu, and S. Bidari. 2018. Combustion and exhaust emissions study in a single-cylinder four-stroke diesel engine with swirl augmentation techniques. Biofuels 9 (4):489–502. doi:10.1080/17597269.2017.1284474.
  • Iyogun, C. O., and M. Birouk. 2009. Effect of sudden expansion on entrainment and spreading rates of a jet issuing from asymmetric nozzles. Flow, turbulence and combustion 82 (3):287–315. doi:10.1007/s10494-008-9176-9.
  • Jaichandar, S., P. S. Kumar, and K. Annamalai. 2012. Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 47 (1):388–94. doi:10.1016/j.energy.2012.09.059.
  • Jain, N. L., S. L. Soni, M. P. Poonia, D. Sharma, A. K. Srivastava, and H. Jain. 2017. Performance and emission characteristics of preheated and blended thumba vegetable oil in a compression ignition engine. Applied Thermal Engineering 113:970–79. doi:10.1016/j.applthermaleng.2016.10.186.
  • Janaun, J., and N. Ellis. 2010. Perspectives on biodiesel as a sustainable fuel. Renewable and Sustainable Energy Reviews 14 (4):1312–20. doi:10.1016/j.rser.2009.12.011.
  • Jiang, Y. J., A. Umemura, and C. K. Law. 1992. An experimental investigation on the collision behaviour of hydrocarbon droplets. Journal of fluid mechanics 234 (–1):171–90. doi:10.1017/S0022112092000740.
  • Joshi, R. M., and M. J. Pegg. 2007. Flow properties of biodiesel fuel blends at low temperatures. Fuel 86 (1–2):143–51. doi:10.1016/j.fuel.2006.06.005.
  • Kalam, M. A., and H. H. Masjuki. 2002. Biodiesel from palmoil—an analysis of its properties and potential. Biomass & bioenergy 23 (6):471–79. doi:10.1016/S0961-9534(02)00085-5.
  • Kannan, G. R., and R. Anand. 2011. Experimental evaluation of DI diesel engine operating with diestrol at varying injection pressure and injection timing. Fuel processing technology 92 (12):2252–63. doi:10.1016/j.fuproc.2011.07.015.
  • Karaosmanoǧlu, F., G. Kurt, and T. Özaktaş. 2000. Long term CI engine test of sunflower oil. Renewable energy 19 (1–2):219–21. doi:10.1016/S0960-1481(99)00034-8.
  • Kasyap, T. V., D. Sivakumar, and B. N. Raghunandan. 2009. Flow and breakup characteristics of elliptical liquid jets. International journal of multiphase flow 35 (1):8–19. doi:10.1016/j.ijmultiphaseflow.2008.09.002.
  • Kim, H. J., S. H. Park, and C. S. Lee. 2010. A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure. Fuel processing technology 91 (3):354–63. doi:10.1016/j.fuproc.2009.11.007.
  • Kim, H. M., W. J. Cho, and K. H. Lee. 2008. Effect of injection condition and swirl on DI diesel combustion in a transparent engine system. International Journal of Automotive Technology 9 (5):535–41. doi:10.1007/s12239-008-0063-0.
  • Kim, J. S.(2006).Fluid Swirling Device, in: United States Patent, USA.
  • Kishna, R. S., K. Nanthagopal, B. Ashok, R. Srinath, M. P. Kumar, and P. Bhowmick. 2019. Investigation on pilot injection with low temperature combustion of Calophyllum inophyllum biodiesel fuel in common rail direct injection diesel engine. Fuel 258:116144. doi:10.1016/j.fuel.2019.116144.
  • Klomp, E. D. (1984). U.S. Patent No. 4,428,334. Washington, DC: U.S. Patent and Trademark Office.
  • Knothe, G., and K. R. Steidley. 2005. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84 (9):1059–65. doi:10.1016/j.fuel.2005.01.016.
  • Kook, S., C. Bae, P. C. Miles, D. Choi, M. Bergin, and R. D. Reitz. 2006. The effect of swirl ratio and fuel injection parameters on CO emission and fuel conversion efficiency for high-dilution, low-temperature combustion in an automotive diesel engine. SAE Transactions 111–32. doi:10.4271/2006-01-0197.
  • Körbitz, W. 1999. Biodiesel production in Europe and North America, an encouraging prospect. Renewable Energy 16 (1–4):1078–83. doi:10.1016/S0960-1481(98)00406-6.
  • Kostas, J., D. Honnery, and J. Soria. 2009. Time resolved measurements of the initial stages of fuel spray penetration. Fuel 88 (11):2225–37. doi:10.1016/j.fuel.2009.05.013.
  • Kostas, J., D. Honnery, J. Soria, A. Kastengren, Z. Liu, C. F. Powell, and J. Wang. 2009. Effect of nozzle transients and compressibility on the penetration of fuel sprays. Applied Physics Letters 95 (2):024101. doi:10.1063/1.3182821.
  • Krishna, B. M., and J. M. Mallikarjuna. 2009. Tumble flow analysis in an unfired engine using particle image velocimetry. World academy of science, engineering and technology 54:430–35.
  • Krishna, D. V., and V. Ganesan. 2015. Effect of Swirl Ratio on Combustion and Emissions with a Re-entrant Piston Bowl in a DI Diesel Engine. 24th NATIONAL CONFERENCE ON INTERNAL COMBUSTION ENGINES AND COMBUSTION, University of petroleum and Energy studies, Dehradun, India, 30 OCT – 01 NOV.
  • Kumar, A. R., G. J. Raju, and K. H. Reddy. 2018, March. Experimental investigation of in-cylinder air flow to optimize number of helical guide vanes to enhance DI diesel engine performance using mamey sapote biodiesel. ( IOP Publishing) In IOP Conference Series: Materials Science and Engineering Vol. 330 (No. 1):012109. doi: 10.1088/1757-899X/330/1/012109.
  • Kuti, O. A., J. Zhu, K. Nishida, X. Wang, and Z. Huang. 2013. Characterization of spray and combustion processes of biodiesel fuel injected by diesel engine common rail system. Fuel 104:838–46. doi:10.1016/j.fuel.2012.05.014.
  • Labecki, L., and L. C. Ganippa. 2012. Effects of injection parameters and EGR on combustion and emission characteristics of rapeseed oil and its blends in diesel engines. Fuel 98:15–28. doi:10.1016/j.fuel.2012.03.029.
  • Laramee, R. S., D. Weiskopf, J. Schneider, and H. Hauser (2004, October). Investigating swirl and tumble flow with a comparison of visualization techniques. In IEEE Visualization 2004 (pp. 51–58), Paris, France. IEEE.
  • Lee, S. J., and S. J. Baek. 1994. The effect of aspect ratio on the near-field turbulent structure of elliptic jets. Flow Measurement and Instrumentation 5 (3):170–80. doi:10.1016/0955-5986(94)90016-7.
  • Lefebvre, A. H., and V. G. McDonell. 2017. Atomization and Sprays. 2nd ed ed. Boca Raton: CRC Press.
  • Lešnik, L., B. Kegl, G. Bombek, M. Hočevar, and I. Biluš. 2018. The influence of in-nozzle cavitation on flow characteristics and spray break-up. Fuel 222:550–60. doi:10.1016/j.fuel.2018.02.144.
  • Luigi Di Angelo, L. A., and V. Angelo De. Visualization and characterization ofcr diesel spray wall-impingement. he 10th. International Symposium on Flow Visualization, Japan, 2002
  • Mahmud, M. I., H. M. Cho, and K. Sang-Shin (2009). Variable countercurrent distribution control (VCDC) system in IC diesel engine. In Proceedings of the World Congress on Engineering (Vol. 2), London, UK.
  • Markadeh, R. S., A. Arabkhalaj, H. Ghassemi, and A. Azimi. 2020. Droplet evaporation under spray-like conditions. International journal of heat and mass transfer 148:119049. doi:10.1016/j.ijheatmasstransfer.2019.119049.
  • McKinley, G. H., and M. Renardy. 2011. Wolfgang von ohnesorge. Physics of Fluids 23 (12):127101. doi:10.1063/1.3663616.
  • Mi, J., and G. J. Nathan. 2010. Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles. Flow, turbulence and combustion 84 (4):583–606. doi:10.1007/s10494-009-9240-0.
  • Mi, J., M. Xu, and T. Zhou. 2013. Reynolds number influence on statistical behaviors of turbulence in a circular free jet. Physics of Fluids 25 (7):075101. doi:10.1063/1.4811403.
  • Mohan, B., W. Yang, V. Raman, V. Sivasankaralingam, and S. K. Chou. 2014. Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing. Applied Energy 130:450–57. doi:10.1016/j.apenergy.2014.02.033.
  • Motamedifar, N., and A. Shirneshan. 2018. An experimental study of emission characteristics from cylindrical furnace: effects of using diesel-ethanol-biodiesel blends and air swirl. Fuel 221:233–39. doi:10.1016/j.fuel.2018.01.018.
  • Nagaraju, V., M. Dahodwala, K. Acharya, W. Bryzik, and N. A. Henein (2009, January). Effect of swirl ratio and injection pressure on autoignition, combustion and emissions in a high speed direct injection diesel engine fuelled with Biodiesel (B-20). In ASME 2009 Internal Combustion Engine Division Spring Technical Conference (pp. 359–370), USA. American Society of Mechanical Engineers Digital Collection. Doi: 10.1115/ICES2009-76166
  • Namer, I., and M. V. Ötügen. 1988. Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers. Experiments in fluids 6 (6):387–99. doi:10.1007/BF00196484.
  • Nanthagopal, K., B. Ashok, B. Saravanan, D. Patel, B. Sudarshan, and R. A. Ramasamy. 2018. An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum Inophyllum biodiesel. Energy Conversion and Management 158:70–80. doi:10.1016/j.enconman.2017.12.048.
  • Naser, J. A., and A. D. Gosman. 1995. Flow prediction in an axisymmetric inlet valve/port assembly using variants of k—ε. Proceedings of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering 209 (1):57–69. doi:10.1243/PIME_PROC_1995_209_183_02.
  • Nocivelli, L., G. Montenegro, Y. Liao, P. D. Eggenschwiler, J. Campbell, and N. Rapetto. 2015. Modeling of aqueous urea solution injection with characterization of spray-wall cooling effect and risk of onset of wall wetting. In 70th Conference of the Italian Thermal Machines Engineering Association. ATI pp. 38–44. 2015 (). Elsevier Ltd. . doi:10.1016/j.egypro.2015.11.880.
  • Ozsezen, A. N. 2012. Using preheated crude sunflower oil as a fuel in a diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (6):508–18. doi:10.1080/15567030903530608.
  • Panchasara, H., and A. Agrawal. 2017. Effect of Enclosed Flame on Spray Characteristics and Emissions from Preheated Bio-oil Using an Air-blast Atomizer. Energy Procedia 110:216–22. doi:10.1016/j.egypro.2017.03.130.
  • Pandian, M., S. P. Sivapirakasam, and M. Udayakumar. 2011. Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Applied Energy 88 (8):2663–76. doi:10.1016/j.apenergy.2011.01.069.
  • Park, J., J. H. Jang, and S. Park. 2015. Effect of fuel temperature on heavy fuel oil spray characteristics in a common-rail fuel injection system for marine engines. Ocean Engineering 104:580–89. doi:10.1016/j.oceaneng.2015.06.002.
  • Park, S. 2012. Optimization of combustion chamber geometry and engine operating conditions for compression ignition engines fueled with dimethyl ether. Fuel 97:61–71. doi:10.1016/j.fuel.2012.03.004.
  • Payri, F., J. Benajes, X. Margot, and A. Gil. 2004. CFD modeling of the in-cylinder flow in direct-injection Diesel engines. Computers & fluids 33 (8):995–1021. doi:10.1016/j.compfluid.2003.09.003.
  • Payri, R., J. P. Viera, V. Gopalakrishnan, and P. G. Szymkowicz. 2017. The effect of nozzle geometry over the evaporative spray formation for three different fuels. Fuel 188:645–60. doi:10.1016/j.fuel.2016.10.064.
  • Perini, F., A. Dempsey, R. D. Reitz, D. Sahoo, B. Petersen, and P. C. Miles. 2013. A computational investigation of the effects of swirl ratio and injection pressure on mixture preparation and wall heat transfer in a light-duty diesel engine (No. 2013-01-1105). SAE Technical Paper. doi:10.4271/2013-01-1105.
  • Phankosol, S., K. Sudaprasert, S. Lilitchan, K. Aryusuk, and K. Krisnangkura. 2014. Estimation of surface tension of fatty acid methyl ester and biodiesel at different temperatures. Fuel 126:162–68. doi:10.1016/j.fuel.2014.02.054.
  • Pickett, L. M., S. Kook, and T. C. Williams. 2009. Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging. SAE international journal of engines 2 (1):439–59. doi:10.4271/2009-01-0658.
  • Pourhoseini, S. H., and R. Asadi. 2017. An experimental study of optimum angle of air swirler vanes in liquid fuel burners. Journal of Energy resources technology 139 (3):3. doi:10.1115/1.4035023.
  • Prasad, B. V. V. S. U., C. S. Sharma, T. N. C. Anand, and R. V. Ravikrishna. 2011. High swirl-inducing piston bowls in small diesel engines for emission reduction. Applied Energy 88 (7):2355–67. doi:10.1016/j.apenergy.2010.12.068.
  • Puhan, S., R. Jegan, K. Balasubbramanian, and G. Nagarajan. 2009. Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine. Renewable energy 34 (5):1227–33. doi:10.1016/j.renene.2008.10.001.
  • Pulkrabek, W. W. 2004. Engineering fundamentals of the internal combustion engine. USA: Pearson Prentice Hall.
  • Purushothaman, K., and G. Nagarajan. 2009. Effect of injection pressure on heat release rate and emissions in CI engine using orange skin powder diesel solution. Energy Conversion and Management 50 (4):962–69. doi:10.1016/j.enconman.2008.12.030.
  • Qi, D. H., H. Chen, L. M. Geng, and Y. Z. Bian. 2010. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends. Energy Conversion and Management 51 (12):2985–92. doi:10.1016/j.enconman.2010.06.042.
  • Qian, D., and R. Liao. 2014. A nonisothermal fluid-structure interaction analysis on the piston/cylinder interface leakage of high-pressure fuel pump. Journal of tribology 136 (2):2. doi:10.1115/1.4026501.
  • Qian, J., and C. K. Law. 1997. Regimes of coalescence and separation in droplet collision. Journal of fluid mechanics 331:59–80. doi:10.1017/S0022112096003722.
  • Quinn, W. R. 2005. Measurements in the near flow field of an isosceles triangular turbulent free jet. Experiments in fluids 39 (1):111–26. doi:10.1007/s00348-005-0988-2.
  • Quinn, W. R. 2006. Upstream nozzle shaping effects on near field flow in round turbulent free jets. European Journal of Mechanics-B/Fluids 25 (3):279–301. doi:10.1016/j.euromechflu.2005.10.002.
  • Quinn, W. R. 2007. Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate. European Journal of Mechanics-B/Fluids 26 (4):583–614. doi:10.1016/j.euromechflu.2006.10.005.
  • Quinn, W. R., and J. Militzer. 1988. Experimental and numerical study of a turbulent free square jet. The Physics of fluids 31 (5):1017–25. doi:10.1063/1.867007.
  • Rajesh, S., B. M. Kulkarni, N. R. Banapurmath, and S. Kumarappa. 2018. Effect of injection parameters on performance and emission characteristics of a CRDi diesel engine fuelled with acid oil biodiesel–ethanol blended fuels. Biofuels 9 (3):353–67. doi:10.1080/17597269.2016.1271628.
  • Raman, R., and N. Kumar. 2019. Experimental investigation to analyze the effect of induction length of diesel-acetylene dual fuel engine. Energy Sources, Part A. Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2019.1663314.
  • Reitz, R. D. (1978). Atomization and other breakup regimes of a liquid jet. PhDT.
  • Reitz, R. D. 1996. Spray Technology Short Course. SAE Power train and fluid system conference and Exhibition, University of madiscon. Computer modeling of sprays, Pittsburgh, PA.
  • Reitz, R. D., and F. V. Bracco. 1982. Mechanism of atomization of a liquid jet. The physics of Fluids 25 (10):1730–42. doi:10.1063/1.863650.
  • Saad, I. 2011, December. Effects of guide vane swirl and tumble device (GVSTD) to the air flow of naturally aspirated CI engine. ICME. Procedia Engineering, 90, Elsevier.
  • Sakthivel, R., K. Ramesh, R. Purnachandran, and P. M. Shameer. 2018. A review on the properties, performance and emission aspects of the third generation biodiesels. Renewable and Sustainable Energy Reviews 82:2970–92. doi:10.1016/j.rser.2017.10.037.
  • Satyanarayana, M., and C. Muraleedharan. 2012. Experimental studies on performance and emission characteristics of neat preheated vegetable oils in a di diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (18):1710–22. doi:10.1080/15567036.2010.485172.
  • Sayin, C., and M. Gumus. 2011. Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel. Applied Thermal Engineering 31 (16):3182–88. doi:10.1016/j.fuel.2011.11.020.
  • Sayin, C., M. Gumus, and M. Canakci. 2010. Effect of fuel injection timing on the emissions of a direct-injection (DI) diesel engine fueled with canola oil methyl ester− diesel fuel blends. Energy & Fuels 24 (4):2675–82. doi:10.1021/ef901451n.
  • Schadow, K. C., E. Gutmark, D. M. Parr, and K. J. Wilson. 2004. Selective control of flow coherence in triangular jets. Experiments in fluids 6 (2):129–35. doi:10.1007/BF00196464.
  • Shameer, P. M., and K. Ramesh. 2018. Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine. Renewable and Sustainable Energy Reviews 81:45–61. doi:10.1016/j.rser.2017.07.048.
  • Sharma, P., and T. Fang. 2014. Breakup of liquid jets from non-circular orifices. Experiments in fluids 55 (2):1666. doi:10.1007/s00348-014-1666-z.
  • Sharma, P., and T. Fang. 2015. Spray and atomization of a common rail fuel injector with non-circular orifices. Fuel 153:416–30. doi:10.1016/j.fuel.2015.02.119.
  • Sharma, V. K., M. Mohan, and C. Mouli. 2017, November. Effect of intake swirl on the performance of single cylinder direct injection diesel engine. In IOP Conference Series. ( IOP Publishing) Materials Science and Engineering Vol. 263 (No. 6):062077. doi: 10.1088/1757-899X/263/6/062077.
  • Sharma, Y. C., and B. Singh. 2009. Development of biodiesel: current scenario. Renewable and Sustainable Energy Reviews 13 (6–7):1646–51. doi:10.1016/j.rser.2008.08.009.
  • Shi, Y., and R. D. Reitz. 2008. Optimization study of the effects of bowl geometry, spray targeting, and swirl ratio for a heavy-duty diesel engine operated at low and high load. International Journal of Engine Research 9 (4):325–46. doi:10.1243/14680874JER00808.
  • Shlegel, N. E., P. P. Tkachenko, and P. A. Strizhak. 2020. Influence of viscosity, surface and interfacial tensions on the liquid droplet collisions. Chemical engineering science 115639. doi:10.1016/j.ces.2020.115639.
  • Siber, R., W. Fasan, and T. Lang Intake system of combustion air of a vehicle, in, US Patent 20,120,085,307; 2012.
  • Stiesch, G. 2003. Modeling engine spray and combustion processes. Springer Science & Business Media. Germany: springer-Verlag Berlin Heidelberg GmbH and CO KG.
  • Stone, R. 2012. Introduction to Internal Combustion Engines. Brunel University, Uxbridge Middlesex: Palgrave Macmillan.
  • Su, L., X. Li, X. He, and F. Liu. 2015. Experimental research on the diffusion flame formation and combustion performance of forced swirl combustion system for DI diesel engines. Energy Conversion and Management 106:826–34. doi:10.1016/j.enconman.2015.10.027.
  • Sumiyoshi, M., S. Sekiya, K. Motosugi, H. Takahashi, and S. Toyoda (1982). U.S. Patent No. 4,336,776. Washington, DC: U.S. Patent and Trademark Office.
  • Sun, Z., X. Li, and W. Du (2011, February). Research on swirler for intake induced swirl in DI diesel engine. In 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (pp. 275–279) changsa, china. IEEE. Doi: 10.4028/www.scientific.net/AMM.130-134.95
  • Suresh, M., C. P. Jawahar, and A. Richard. 2018. A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renewable and Sustainable Energy Reviews 92:38–49. doi:10.1016/j.rser.2018.04.048.
  • Taskiran, O. O. 2018. Investigation of the effect of nozzle inlet rounding on diesel spray formation and combustion. Fuel 217:193–201. doi:10.1016/j.fuel.2017.12.031.
  • Tiwari, S. K., S. K. Tiwari, N. Kumar, N. Kumar, and N. Kumar. 2017. Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review. Renewable and Sustainable Energy Reviews 79:1016–33. doi:10.1016/j.rser.2017.05.116.
  • Vedharaj, S., R. Vallinayagam, W. M. Yang, C. G. Saravanan, and P. S. Lee. 2015. Optimization of combustion bowl geometry for the operation of kapok biodiesel–Diesel blends in a stationary diesel engine. Fuel 139:561–67. doi:10.1016/j.fuel.2014.09.020.
  • Wang, G., W. Yu, X. Li, Y. Su, R. Yang, and W. Wu. 2019a. Experimental and numerical study on the influence of intake swirl on fuel spray and in-cylinder combustion characteristics on large bore diesel engine. Fuel 237:209–21. doi:10.1016/j.fuel.2018.09.156.
  • Wang, L., J. Lowrie, G. Ngaile, and T. Fang. 2019b. High injection pressure diesel sprays from a piezoelectric fuel injector. Applied Thermal Engineering 152:807–24. doi:10.1016/j.applthermaleng.2019.02.095.
  • Wei, S., F. Wang, X. Leng, X. Liu, and K. Ji. 2013. Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines. Energy Conversion and Management 75:184–90. doi:10.1016/j.enconman.2013.05.044.
  • Wierzba, A. 1990. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Experiments in fluids 9 (1–2):59–64. doi:10.1007/BF00575336.
  • Wierzba, A., and K. Takayama. 1988. Experimental investigation of the aerodynamic breakup of liquid drops. AIAA Journal 26 (11):1329–35. doi:10.2514/3.10044.
  • Xin, X., D. X. Liu, L. Q. Wang, and L. Wang. 2012. Influence of variable swirl intake manifolds for DI diesel engine on in-cylinder air motion. In Applied Mechanics and Materials Vol. 130:pp. 95–98. Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/AMM.130-134.95.
  • Xu, G., and R. A. Antonia. 2002. Effect of initial conditions on the temperature field of a turbulent round free jet. International communications in heat and mass transfer 29 (8):1057–68. doi:10.1016/S0735-1933(02)00434-7.
  • Xu, M., A. Pollard, J. Mi, F. Secretain, and H. Sadeghi. 2013. Effects of Reynolds number on some properties of a turbulent jet from a long square pipe. Physics of Fluids 25 (3):035102. doi:10.1063/1.4797456.
  • Yaakob, Z., M. Mohammad, M. Alherbawi, Z. Alam, and K. Sopian. 2013. Overview of the production of biodiesel from waste cooking oil. Renewable and sustainable energy reviews 18:184–93. doi:10.1016/j.rser.2012.10.016.
  • Yoon, S. H., S. H. Park, and C. S. Lee. 2008. Experimental investigation on the fuel properties of biodiesel and its blends at various temperatures. Energy & Fuels 22 (1):652–56. doi:10.1021/ef7002156.
  • Yu, S., B. Yin, W. Deng, H. Jia, Z. Ye, B. Xu, and H. Xu. 2018. Experimental study on the spray characteristics discharging from elliptical diesel nozzle at typical diesel engine conditions. Fuel 221:28–34. doi:10.1016/j.fuel.2018.02.090.
  • Yu, S., B. Yin, W. Deng, H. Jia, Z. Ye, B. Xu, and H. Xu. 2019. Experimental study on the spray and mixing characteristics for equilateral triangular and circular nozzles with diesel and biodiesel under high injection pressures. Fuel 239:97–107. doi:10.1016/j.fuel.2018.10.146.
  • Yunyi, G., L. Changwen, H. Yezhou, and P. Zhijun. 1998. An experimental study on droplet size characteristics and air entrainment of elliptic sprays. No. 982546. USA: SAE Technical Paper .doi:10.4271/982546.
  • Zetmeir, K. D. (2003). U.S. Patent No. 6,601,570. Washington, DC: U.S. Patent and Trademark Office.
  • Zhang, X., Z. He, Q. Wang, X. Tao, Z. Zhou, X. Xia, and W. Zhang. 2018. Effect of fuel temperature on cavitation flow inside vertical multi-hole nozzles and spray characteristics with different nozzle geometries. Experimental Thermal and Fluid Science 91:374–87. doi:10.1016/j.expthermflusci.2017.06.006.
  • Zhang, Y. S., J. X. Xu, B. Xu, and H. Y. Zhang. 2005. Research on high-pressure fuel pump of common rail fuel System. Neiranji Gongcheng(Chin. Intern. Combust. Engine Eng.) 26 (1):1–5.
  • Zhou, H., X. Li, Y. Chen, Y. Kang, D. Liu, and F. Liu. 2019. Combustion performance and mechanisms of the fuel/air mixture in a new separated swirl combustion system. Fuel 258:116058. doi:10.1016/j.fuel.2019.116058.
  • Zhu, Y., H. Zhao, D. A. Melas, and N. Ladommatos. 2004. Computational study of the effects of the re-entrant lip shape and toroidal radii of piston bowl on a HSDI diesel engine’s performance and emissions (No. 2004-01-0118. SAE Technical Paper. doi:10.4271/2004-01-0118.
  • Zuleta, E. C., L. Baena, L. A. Rios, and J. A. Calderón. 2012. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: a review. Journal of the Brazilian Chemical Society 23 (12):2159–75. doi:10.1590/S0103-50532012001200004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.