230
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Characterization and Evaluation of Energy Properties of Pellets produced from Coir pith, Saw dust and Ipomoea carnea and their blends

ORCID Icon, , &
Received 05 Jul 2020, Accepted 27 Dec 2020, Published online: 19 Jan 2021

References

  • Alves, J. L. F., E. O. da Trindade, J. C. G. Da Silva, G. D. Mumbach, R. F. Alves, J. M. B. Filho, P. F. de Athayde-filh, R. F. de Sena, et al. 2020b. Lignocellulosic residues from the brazilian juice processing industry as novel sustainable sources for bioenergy production: Preliminary assessment using physicochemical characteristics. J. Braz. Chem. Soc 31 (9):1939–48.
  • Alves, J. L. F., J. C. G. da Silva, G. D. Mumbach, M. D. Domenico, R. F. de Sena, R. A. F. Machado, C. Marangoni, et al. 2020a. Demonstrating the suitability of tamarind residues to bioenergy exploitation via combustion through physicochemical properties, performance indexes, and emission characteristics. BioEnergy Res 13 (4):1308–20. doi:10.1007/s12155-020-10158-z.
  • Atay, O. A., and K. Ekinci. 2020. Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark. Renew. Energ 149:933–39. doi:10.1016/j.renene.2019.10.070.
  • Banerjee, P. K. 2020. Handbook of Natural Fibers , In: Kozłowski, R. M. Kozłowski and M. Mackiewicz-Talarczyk , M. (eds), imprint: woodhead publishing, United Kingdom, 2:621-651.
  • Brand, M. A., B. R. de Souza, R. Buss, D. Waltrick, R. C. Jacinto, et al. 2018. Thermogravimetric analysis for characterization of the pellets produced with forest and agricultural residues. Ciência Rural, Santa Maria 48:11.
  • Carnaje, N. P., R. B. Talagon, J. P. Peralta, K. Shah, J. Paz-Ferreiro, et al. 2018. Development and characterisation of charcoal briquettes from water hyacinth (eichhornia crassipes)-molasses blend. PLoS ONE 13 (11):e0207135.
  • Choudhury, N. D., R. S. Chutia, T. Bhaskar, R. Kataki, et al. 2014. Pyrolysis of jute dust: Effect of reaction parameters and analysis of products. J.Mater. Cycles Waste Manag 16 (3):449–59.
  • Coal in India. 2019. Department of Industry, Innovation and science, australian government, office of the chief economist. ( accessed on 04. 07.2020). https://www.industry.gov.au/sites/default/files/2019-08/coal-in-india-2019-report.pdf
  • Da Silva, J. C. G., J. L. F. Alves, A. Galdino, W.V. de, F. P. M. Moreira, R. de, S. R. F. José, H.J. de, S. L. F. Andersen, et al. 2017. Combustion of pistachio shell: Physicochemical characterization and evaluation of kinetic parameters. Environ. Sci. Pollut. Res 25 (22):21420–29.
  • Davies, R. M., and O. A. Davies. 2013. Physical and combustion characteristics of briquettes made from water hyacinth and phytoplankton scum as binder. J. Comb 549894:1–7.
  • Demirbas, A. 2002. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit 20 (1):105–11. doi:10.1260/014459802760170420.
  • Demirbas, A. 2003. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers. Manage 44 (9):1481–86. doi:10.1016/S0196-8904(02)00168-1.
  • Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Prog. Energy Combus. Sci 30 (2):219–30. doi:10.1016/j.pecs.2003.10.004.
  • EN ISO 17225-2:2014. 2014. Solid Biofuels Fuel specification and classes. Part-2: Graded wood pellets. UK: National standard Authority of Ireland.
  • Energy Access outlook. 2017. ( accessed on 26.11.2019). https://www.gogla.org/sites/default/files/resource_docs/weo2017specialreport_energyaccessoutlook.pdf
  • FAO. 2015. Wood fuels: Hand book. Rome: food and agriculture organization of United Nations.
  • Global Bioenergy statistics report. 2018. World bioenergy association. ( accessed on 24. 03.2020). https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202018_LQ.pdf
  • Global Bioenergy statistics report. 2019. World bioenergy association. [ accessed on 24.03.2020]. https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_LQ.pdf
  • Grover, P. D., and S. K. Mishra. 1996. Biomass briquetting: technology and practice. Regional Wood Energy Development Programme in Asia. Field Document No. 46, Food and Agricultural Organization. ( accessed on 22.02.2020). http://leehite.org/biomass/documents/Biomass%20Briquetting%20Technology%20and%20Practices%20FAO.pdf
  • Hakizimana, J., D. K., de, and H. T. Kim. 2016. Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda. Energy 102:453–64. doi:10.1016/j.energy.2016.02.073.
  • Huisman, W. 2003. Optimising harvesting and storage systems for energy crops in the Netherlands. In: International Conference on Crop Harvesting and Processing, Louisville, Kentucky, USA, 1–19. 2003.
  • India wood sector market study. 2016. ( accessed on 21.10.2020). https://www.michigan.gov/documents/mdard/AHEC-India_Wood_Sector_Market_Study-2016reduced_550865_7.pdf
  • Kapoor, R., P. Ghosh, M. Kumar, S. Sengupta, A. Gupta, S. S. Kumar, V. Vijay, V. Kumar, V. K. Vijay, D. Pant, et al. 2020. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technology 304:123036. doi:10.1016/j.biortech.2020.123036.
  • Kashyap, D. P., N. K. Grover, and G. Singh. 2016. Review of biomass energy potential in India. International Journal of Engineering and Scientific Research 4 (6):86–93.
  • Kethobile, E., C. Ketlogetswe, and J. Gandure. 2020. Characterisation of the non-oil jatropha biomass material for use as a source of solid fuel. Biomass Convers. Biorefin 10 (4):1251–67. doi:10.1007/s13399-019-00511-4.
  • Konwer, D., R. Kataki, and M. Saikia. 2007. Production of solid fuel from ipomoea carnea wood. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (9):817–22. doi:10.1080/00908310500281189.
  • Kpalo, S. Y., M. F. Zainuddin, and L. A. Manaf. 2020. Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria. J. Clean Prod 124745. doi:10.1016/j.jclepro.2020.124745.
  • Law, H. C., L. M. Gan, and H. L. Gan. 2018. Experimental study on the mechanical properties of biomass briquettes from different agricultural residues combination. MATEC Web of Conferences 225:04026. doi:10.1051/matecconf/201822504026.
  • Li, Y., and H. Liu. 2000. High pressure densification of wood residues to form an upgraded fuel. Biomass Bioenerg 19 (3):177–86. doi:10.1016/S0961-9534(00)00026-X. (2000).
  • Liu, Z., B. Fei, Z. Jiang, Z. Cai, Y. Yu, et al. 2013. The properties of pellets from mixing bamboo and rice straw. Renew. Energy 55:1–5.
  • Mahlia, T. M. I., Z. A. H. S. Syazmi, M. Mofijur, A. E. P. Abas, M. R. Bilad, H. C. Ong, A. S. Silitonga, et al. 2020. Patent landscape review on biodiesel production: technology updates. Renew. Sust. Energ. Rev 118:109526.
  • Maj, G. 2018. Emission factors and energy properties of agro and forest biomass in aspect of sustainability of energy sector. Energies 11 (6):1516. doi:10.3390/en11061516.
  • Mani, S., L. G. Tabil, and S. Sokhansanj. 2006. Specific energy requirement for compacting corn stover. Bioresour. Technol 97 (12):1420–26. doi:10.1016/j.biortech.2005.06.019.
  • Martinez, C. L. M., E. P. A. Rochaa, A. C. O. Carneiro, F. J. B. Gomes, L. A. R. Batalha, E. Vakkilainen, M. Cardoso, et al. 2019. Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenerg 120:68–76.
  • Miller, B. 2013. Fuel considerations and burner design for ultra-supercritical power plant. In Ultra- Spupercritical Coal Power Plants Material, Technologies and Optimization, Editior: Dongke Zhang FTSE,57–80. Cambridge, UK: Woodhead publishing Series in Energy.
  • Miranda, T., I. Montero, F. J. Sepúlvenda, J. I. Arranz, C. V. Rojas, S. Nogales, et al. 2015. A review of pellets from different sources. Materials 8 : 1413-1427.
  • Munir, S., S. S. Daood, W. Nimmo, A. M. Cunliffe, B. M. Gibbs, et al. 2009. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol 100 (3):1413–18.
  • Muthuraman, M., T. Namioka, and K. Yoshikawa. 2010. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste. Bioresour. Technol 101 (7):2477–82. doi:10.1016/j.biortech.2009.11.060.
  • Obernberger, I., and G. Thek. 2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenerg 27 (6):653–69. doi:10.1016/j.biombioe.2003.07.006.
  • Ojelel, S., T. Otiti, and S. Mugisa. 2015. Fuel value indices of selected woodfuel species used in Masindi and Nebbi districts of Uganda. Energy, Sustainability and Society 5 (1):14. doi:10.1186/s13705-015-0043-y.
  • Ong, H. C., H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong, T. Yusaf, et al. 2014. Engine performance and emissions using jatropha curcas, ceiba pentandra and calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69:427–45.
  • Onukak, I. E., I. A. Mohammed-Dabo, A. O. Ameh, S. I. R. Okoduwa, O. O. Fasanya, et al. 2017. Production and characterization of biomass briquettes from tannery solid waste. Recycling 2 (4):17.
  • Pathmasiri, T. K. K. S., G. I. P. Perera, and R. Gallage. 2019. Investigation of palm-castor oil blends as base stocks of bio-lubricant for industrial application. Energ. Source Part-A. doi:10.1080/15567036.2019.1643425.
  • Perea-Moreno, A. J., M. A. Perea-Moreno, M. P. Dorado, F. Manzano-Agugliaro, et al. 2018. Mango stone properties as biofuel and its potential for reducing CO2 emissions. J. Clean. Prod 190:53–62.
  • Protásio, T. P., L. Bufalino, G. H. D. Tonoli, M. Guimarães Junior, P. F. Trugilho, L. M. Mendes, et al. 2013. Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. BioResources 8 (1):1166–85.
  • Purohit, P., and V. Chaturvedi. 2018. Biomass pellets for power generation in India: A techno-economic evaluation. Environ. Sci. Pollut. Res 25 (29):29614–32. doi:10.1007/s11356-018-2960-8.
  • Reddy, N. 2019. Sustainable applications of coir and other coconut by-products. Switzerland: Springer International Publishing.
  • Ríos-Badran, I. M., I. Luzardo-Ocampo, J. F. García-Trejo, J. S. Cruz, C. G. Antonio, et al. 2020. Production and characterization of fuel pellets from rice husk and wheat straw. Renew. Energ 125:500–07.
  • Saikia, P., U. N. Gupta, R. S. Barman, R. Kataki, R. S. Chutia, B. P. Baruah, et al. 2015. Production and characterization of bio-oil produced from ipomoea carnea bio-weed. BioEnergy Research 8 (3):1212–23.
  • Sellin, N., B. G. Oliveira, C. Marangoni, O. Souza, et al. 2013. Use of banana culture waste to produce pellets. Chem. Eng. Trans 32:349–54.
  • Silitonga, A. S., H. H. Masjuki, T. M. I. Mahlia, H. C. Ong, W. T. Chong, M. H. Boosroh, et al. 2013. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sust. Energ. Rev 22:346–60.
  • Silva, S. B., M. D. C. Arantes, J. K. B. de Andrade, C. R. Andrade, A. C. O. Carneiro, T. P. Protásio, et al. 2020. Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renew. Energ 147:1870–79.
  • Technical specification for Agro Residue based biomass pellets (non-torrefied/torrefied) for co-firing in coal based thermal power plants. Government of India, Ministry of Power, Central Electricity Authority, New Delhi. 2018. ( accessed on 22.02.2020). http://cea.nic.in/reports/others/thermal/tetd/final_spec_biomass.pdf
  • Tumuluru, J. S. 2019. Pelleting of pine and switchgrass blends: Effect of process variables and blend ratio on the pellet quality and energy consumption. Energies 12:1198. doi:10.3390/en12071198.
  • Tumuluru, J. S., C. T. Wright, J. R. Hess, K. L. Kenney, et al. 2011. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefin 5 (6):683–707.
  • van Dam, J. E. G., M. J. A. van den Oever, W. Teunissen, E. R. P. Keijsers, A. G. Peralta, et al. 2004. Process for production of high density/high performance binderless boards from whole coconut husk, part 1: lignin as intrinsic thermosetting binder resin. Ind. Crops Prod 19 (3):207–16.
  • Wzorek, M. 2012. Characterisation of the properties of alternative fuels containing sewage sludge. Fuel Process. Technol 104:80–89. doi:10.1016/j.fuproc.2012.04.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.