141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The evolution and desulfurization of sulfur in chemical looping combustion of coal

ORCID Icon, , &
Received 19 May 2020, Accepted 06 Jan 2021, Published online: 27 Jan 2021

References

  • Abbas, Z., T. Mezher, and M. R. M. Abu-Zahra. 2013. Evaluation of CO2 purification requirements and the selection of processes for impurities deep removal from the CO2 product stream. Energy Procedia 37:2389–96. doi:10.1016/j.egypro.2013.06.120.
  • Adanez, J., A. Abad, F. Garcia-Labiano, P. Gayan, and L. F. de Diego. 2012. Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science 38:215–82. doi:10.1016/j.pecs.2011.09.001.
  • Adiar, S. K., D. C. Hoppock, and J. J. Monast. 2014. New source review and coal plant efficiency gains: How new and forthcoming air regulations affect outcomes. Energy Policy 70:189–92.
  • Attar, A. 1978. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions: A review. Fuel 57:201–12. doi:10.1016/0016-2361(78)90117-5.
  • Balat, M., H. Balat, and C. Öz. 2009. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants. Energy Sources, Part A 31:1473–86. doi:10.1080/15567030802093138.
  • Berguerand, N., and A. Lyngfelt. 2009. Chemical-looping combustion of petroleum coke using ilmenite in a 10 kW th unit−high-temperature operation. Energy & Fuels 23:5257–68. doi:10.1021/ef900464j.
  • British Petroleum. 2020. BP statistical review of world energy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
  • Buhre, B. J. P., L. K. Elliott, C. D. Sheng, R. P. Gupta, and T. F. Wall. 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science 31:283–307. doi:10.1016/j.pecs.2005.07.001.
  • Chu, X., W. Li, B. Li, and H. Chen. 2008. Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal. Fuel 87:211–15. doi:10.1016/j.fuel.2007.04.014.
  • Cuadrat, A., C. Linderholm, A. Abad, A. Lyngfelt, and J. Adánez. 2011. Influence of limestone addition in a 10 kW th chemical-looping combustion unit operated with petcoke. Energy & Fuels 25:4818–28. doi:10.1021/ef200806q.
  • de Visser, E., C. Hendriks, M. Barrio, M. J. Mølnvik, G. de Koeijer, S. Liljemark, and Y. Le Gallo. 2008. Dynamis CO2 quality recommendations. International Journal of Greenhouse Gas Control 2:478–84. doi:10.1016/j.ijggc.2008.04.006.
  • Directive, E. C. 2001. On the limitation of emissions of certain pollutants into the air from large combustion plants. Official Journal of the European Union L309:1–21.
  • Hou, J., Y. Ma, S. Li, J. Shi, L. He, and J. Li. 2018. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis. Fuel 231:134–44. doi:10.1016/j.fuel.2018.05.046.
  • Hu, G., K. Dam-Johansen, S. Wedel, and J. Peter Hansen. 2006. Review of the direct sulfation reaction of limestone. Progress in Energy and Combustion Science 32:386–407. doi:10.1016/j.pecs.2006.03.001.
  • Ishida, M., and H. G. Jin. 1996. A novel chemical-looping combustor without NOx formation. Industrial & Engineering Chemistry Research 35 (7):2469–72. doi:10.1021/ie950680s.
  • Keleş, S. 2011. Fossil energy sources, climate change, and alternative solutions. Energy Sources, Part A 33:1184–95. doi:10.1080/15567030903330660.
  • Levy, J. H., and T. J. White. 1988. The reaction of pyrite with water vapour. Fuel 67:1336–39. doi:10.1016/0016-2361(88)90114-7.
  • Linderholm, C., and M. Schmitz. 2016. Chemical-looping combustion of solid fuels in a 100kW dual circulating fluidized bed system using iron ore as oxygen carrier. Journal of Environmental Chemical Engineering 4:1029–39. doi:10.1016/j.jece.2016.01.006.
  • Lu, G., K. Zhang, and F. Cheng. 2017. Influence of pine sawdust on SO2 retention by CaO in coal slime briquette. Energy Sources, Part A 39:1754–61. doi:10.1080/15567036.2017.1349215.
  • Luo, M., S. Wang, L. Wang, and M. Lv. 2014. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion. Journal of Power Sources 270:434–40. doi:10.1016/j.jpowsour.2014.07.100.
  • Luo, M., L. Zhou, C. Kuang, C. Wang, and H. Zhang. 2021. Release and fate of pyritic in chemical looping combustion. Fuel 285:119213. doi:10.1016/j.fuel.2020.119213.
  • Ma, J., C. Wang, H. Zhao, and X. Tian. 2018. Sulfur fate during the lignite pyrolysis process in a chemical looping combustion environment. Energy & Fuels 32:4493–501. doi:10.1021/acs.energyfuels.7b03149.
  • Mendiara, T., M. T. Izquierdo, A. Abad, L. F. de Diego, F. García-Labiano, P. Gayán, and J. Adánez. 2014. Release of pollutant components in CLC of lignite. International Journal of Greenhouse Gas Control 22:15–24. doi:10.1016/j.ijggc.2013.12.013.
  • MEPC. 2011. Emission standard of air pollutants for thermal power plants, GB 13223–2011 (inChinese). Beijing: China Environmental Science Press.
  • Notz, R. J., I. Tönnies, N. McCann, G. Scheffknecht, and H. Hasse. 2011. CO2 capture for fossil fuel-fired power plants. Chemical Engineering & Technology 34 (2):163–72. doi:10.1002/ceat.201000491.
  • Socolow, R. H. 2005. Can we bury global warming? Scientific American 293 (1):49–55. doi:10.1038/scientificamerican0705-49.
  • Teyssié, G., H. Leion, G. L. Schwebel, A. Lyngfelt, and T. Mattisson. 2011. Influence of lime addition to ilmenite in chemical-looping combustion (CLC) with solid fuels. Energy & Fuels 25 (8):3843–53. doi:10.1021/ef200623h.
  • Tian, X., K. Wang, H. Zhao, and M. Su. 2017. Chemical looping with oxygen uncoupling of high-sulfur coal using copper ore as oxygen carrier. Proceedings of the Combustion Institute 36 (3):3381–88. doi:10.1016/j.proci.2016.08.056.
  • Wang, B., G. Xiao, X. Song, H. Zhao, and C. Zheng. 2014. Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier. Journal of Thermal Analysis and Calorimetry 118 (3):1593–602. doi:10.1007/s10973-014-4074-y.
  • Wang, B., R. Yan, D. Lee, D. Liang, Y. Zheng, H. Zhao, and C. Zheng. 2008. Thermodynamic investigation of carbon deposition and sulfur evolution in chemical looping combustion with syngas. Energy & Fuels 22 (2):1012–20. doi:10.1021/ef7005673.
  • Wang, C., M. Luo, L. Zhou, and H. Zhang. 2020. Sulfur transformation behavior of inorganic sulfur-containing compounds in chemical looping combustion. Energy & Fuels 34 (3):3969–75. doi:10.1021/acs.energyfuels.9b03982.
  • Wang, L., X. Feng, and L. Shen. 2019. Chemical looping combustion of petroleum coke and conversion of sulfur. Journal of Southeast University (Natural Science Edition) (in Chinese) 49:288–95.
  • Yani, S., and D. Zhang. 2010a. An experimental study into pyrite transformation during pyrolysis of Australian lignite samples. Fuel 89:1700–08. doi:10.1016/j.fuel.2009.07.025.
  • Yani, S., and D. Zhang. 2010b. An experimental study of sulphate transformation during pyrolysis of an Australian lignite. Fuel Processing Technology 91 (3):313–21. doi:10.1016/j.fuproc.2009.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.