414
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Comparison of catalytic activities of Ca-based catalysts from waste in biodiesel production

ORCID Icon & ORCID Icon
Pages 5801-5817 | Received 01 Oct 2020, Accepted 19 Jan 2021, Published online: 17 Feb 2021

References

  • Abdelhady, H. H., H. A. Elazab, E. M. Ewais, M. Saber, and M. S. El-Deab. 2020. Efficient catalytic production of biodiesel using nano-sized sugar beet agro-industrial waste. Fuel 261:116481. doi:10.1016/j.fuel.2019.116481.
  • Abidin, R. Z., G. P. Maniam, and M. H. A. Rahim. 2016. Transesterification of waste cooking oil using calcium loaded on deoiled spent bleaching clay as a solid base catalyst. Bulletin of Chemical Reaction Engineering and Catalysis 11 (2):176–81. doi:10.9767/bcrec.11.2.548.176-181.
  • Aghel, B., M. Mohadesi, A. Ansari, and M. Maleki. 2019. Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst. Renewable Energy 142:207–14. doi:10.1016/j.renene.2019.04.100.
  • Ahmad, S., S. Chaudhary, V. V. Pathak, R. Kothari, and V. V. Tyagi. 2020. Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano–CaO catalyst. Renewable Energy 160:86–97. doi:10.1016/j.renene.2020.06.010.
  • Aitlaalim A., F. Ouanji, A. Benzaouak, M.E. Mahi, E.M. Lotfi, M. Kacimi, L.F. Liotta. 2020. Utilization of waste Grooved Razor Shell (GRS) as a catalyst in biodiesel production from refined and waste cooking oils. In Catalysts, Vol. 10. 703. https://doi.org/10.3390/catal10060703
  • Al-dobouni, I. A., A. B. Fadhil, and I. K. Saeed. 2016. Optimized alkali-catalyzed transesterification of wild mustard (Brassica juncea L.) seed oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (15):2319–25. doi:10.1080/15567036.2014.1002952.
  • AlSharifi, M., and H. Znad. 2020. Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst. Renewable Energy 151:740–49. doi:10.1016/j.renene.2019.11.071.
  • Ayodeji A.A., I.E. Blessing, B. Rasheed, O.E. Modupe, O. Ajibola, A.G. Oluwabunmi, F.S. Ojo. 2018. Production of biodiesel from soybean oil using calcium oxide and cow bone as catalysts. Materials Focus. 7(4):542–48. doi:10.1166/mat.2018.1530.
  • Ayoob, A. K., and A. B. Fadhil. 2020. Valorization of waste tires in the synthesis of an effective carbon based catalyst for biodiesel production from a mixture of non-edible oils. Fuel 264:116754. doi:10.1016/j.fuel.2019.116754.
  • Baek, Y., J. Lee, J. Son, T. Lee, A. Sobhan, J. Lee, S.-M. Koo, W. H. Shin, J.-M. Oh, C. Park et al. 2020. Enzymatic synthesis of formate ester through immobilized lipase and its reuse. Polymers. 12(8):1802. doi:10.3390/polym12081802.
  • Barros, S. D. S., W. A. P. Junior, I. S. Sá, M. L. Takeno, F. X. Nobre, W. Pinheiro, L. Manzato, S. Iglauer, F.A. de Freitas. 2020. Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresource Technology 312:123569. doi:10.1016/j.biortech.2020.123569.
  • Basumatary, S., B. Nath, and P. Kalita. 2018. Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis. Journal of Renewable and Sustainable Energy 10 (4):043105. doi:10.1063/1.5043328.
  • Bedir, Ö., and T. H. Doğan. 2021. Use of sugar industry waste catalyst for biodiesel production. Fuel 286:119476. doi:10.1016/j.fuel.2020.119476.
  • Bharadwaj, A. S., M. Singh, S. Niju, K. M. S. Begum, and N. Anantharaman. 2019. Biodiesel production from rubber seed oil using calcium oxide derived from eggshell as catalyst–optimization and modeling studies. Green Processing and Synthesis 8 (1):430–42. doi:10.1515/gps-2019-0011.
  • Bharti, R., A. Guldhe, D. Kumar, and B. Singh. 2020. Solar irradiation assisted synthesis of biodiesel from waste cooking oil using calcium oxide derived from chicken eggshell. Fuel 273:117778. doi:10.1016/j.fuel.2020.117778.
  • Bostanci, S. C. 2020. Use of waste marble dust and recycled glass for sustainable concrete production. Journal of Cleaner Production 251:119785. doi:10.1016/j.jclepro.2019.119785.
  • Cardoso C.C., A.S. Cavalcanti, R.O. Silva, S. Alves, F.P. de Sousa, V.M.D. Pasa, S. Arias, J.G.A. Pacheco. 2020. Residue-based CaO heterogeneous catalysts from crab and mollusk shells for fame production via transesterification. Journal of the Brazilian Chemical Society 31:756–67.
  • Chen, G., R. Shan, S. Li, and J. Shi. 2015. A biomimetic silicification approach to synthesize CaO–SiO2 catalyst for the transesterification of palm oil into biodiesel. Fuel 153:48–55. doi:10.1016/j.fuel.2015.02.109.
  • Doğan, T. H., and H. Temur. 2013. Effect of fractional winterization of beef tallow biodiesel on the cold flow properties and viscosity. Fuel 108:793–96. doi:10.1016/j.fuel.2013.02.028.
  • Essamlali, Y., O. Amadine, A. Fihri, and M. Zahouily. 2019. Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil. Renewable Energy 133:1295–307. doi:10.1016/j.renene.2018.08.103.
  • Eswararao, Y., S. Niju, K. Begum, and N. Anantharaman. 2020. Investigation of boiler scale deposits as heterogeneous base catalyst for biodiesel production from jatropha oil. Biofuels-Uk 11 (5):615–20. doi:10.1080/17597269.2017.1387745.
  • Farooq, M., A. Ramli, and A. Naeem. 2015. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy 76:362–68. doi:10.1016/j.renene.2014.11.042.
  • Fattah, I. M. R., H. C. Ong, T. M. I. Mahlia, M. Mofijur, A. S. Silitonga, S. M. A. Rahman, A. Ahmad. 2020. State of the art of catalysts for biodiesel production. Frontiers in Energy Research 8:1–17.
  • Gebremariam, S. N., and J. M. Marchetti. 2018. Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversion and Management 174:639–48. doi:10.1016/j.enconman.2018.08.078.
  • Ghanei, R., R. K. Dermani, Y. Salehi, and M. Mohammadi. 2016. Waste animal bone as support for CaO impregnation in catalytic biodiesel production from vegetable oil. Waste and Biomass Valorization 7 (3):527–32. doi:10.1007/s12649-015-9473-1.
  • Graziottin, P. L., M. Rosset, D. Dos Santos Lima, and O. W. Perez-Lopez. 2020. Transesterification of different vegetable oils using eggshells from various sources as catalyst. Vibrational Spectroscopy 109:103087. doi:10.1016/j.vibspec.2020.103087.
  • Hadiyanto, H., A. H. Afianti, U. I. Navi’a, N. P. Adetya, W. Widayat, and H. Sutanto. 2017. The development of heterogeneous catalyst C/CaO/NaOH from waste of green mussel shell (Perna varidis) for biodiesel synthesis. Journal of Environmental Chemical Engineering 5 (5):4559–63. doi:10.1016/j.jece.2017.08.049.
  • Hsiao, M.-C., J.-Y. Kuo, S.-A. Hsieh, P.-H. Hsieh, and -S.-S. Hou. 2020. Optimized conversion of waste cooking oil to biodiesel using modified calcium oxide as catalyst via a microwave heating system. Fuel 266:117114. doi:10.1016/j.fuel.2020.117114.
  • Indarti, E. 2016. Hydrated calcined Cyrtopleura costata seashells as an effective solid catalyst for microwave-assisted preparation of palm oil biodiesel. Energy Conversion and Management 117:319–25. doi:10.1016/j.enconman.2016.03.030.
  • Jamsaz, A., and E. K. Goharshadi. 2020. An environmentally friendly superhydrophobic modified polyurethane sponge by seashell for the efficient oil/water separation. Process Safety and Environmental Protection 139:297–304. doi:10.1016/j.psep.2020.04.042.
  • Jindapon, W., S. Jaiyen, and C. Ngamcharussrivichai. 2016. Seashell-derived mixed compounds of Ca, Zn and Al as active and stable catalysts for the transesterification of palm oil with methanol to biodiesel. Energy Conversion and Management 122:535–43. doi:10.1016/j.enconman.2016.06.012.
  • Jung, J.-M., J.-I. Oh, J.-G. Kim, -H.-H. Kwon, Y.-K. Park, and E. E. Kwon. 2019. Valorization of sewage sludge via non-catalytic transesterification. Environment International 131:105035. doi:10.1016/j.envint.2019.105035.
  • Karpagam, R., K. Rani, B. Ashokkumar, I. G. Moorthy, A. Dhakshinamoorthy, and P. Varalakshmi. 2020. Green energy from Coelastrella sp. M-60: Bio-nanoparticles mediated whole biomass transesterification for biodiesel production. Fuel 279:118490. doi:10.1016/j.fuel.2020.118490.
  • Khan, A.M., A.H. Safi, M.N. Ahmed, A.R. Siddiqui, M.A. Usmani, S.-u.-H. Khan, K. Yasmeen. 2019. Biodiesel synthesis from waste cooking oil using a variety of waste marble as heterogeneous catalysts. Brazilian Journal of Chemical Engineering. 36(4):1487–500. doi:10.1590/0104-6632.20190364s20190021.
  • Khan, H. M., T. Iqbal, C. H. Ali, A. Javaid, and I. I. Cheema. 2020. Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel 277: 118091.
  • Lani, N. S., N. Ngadi, and I. M. Inuwa. 2020. New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production. Renewable Energy 156:1266–77. doi:10.1016/j.renene.2019.10.132.
  • Laskar, I. B., R. Gupta, S. Chatterjee, C. Vanlalveni, and L. Rokhum. 2020. Taming waste: Waste mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renewable Energy 161:207–20. doi:10.1016/j.renene.2020.07.061.
  • Laskar, I. B., K. Rajkumari, R. Gupta, S. Chatterjee, B. Paul, and L. Rokhum. 2018. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Advances 8 (36):20131–42. doi:10.1039/C8RA02397B.
  • Lin, Y.-C., K. T. Amesho, C.-E. Chen, P.-C. Cheng, and F.-C. Chou. 2020. A cleaner process for green biodiesel synthesis from waste cooking oil using recycled waste oyster shells as a sustainable base heterogeneous catalyst under the microwave heating system. Sustainable Chemistry and Pharmacy 17:100310. doi:10.1016/j.scp.2020.100310.
  • Liu, Y., Y. F. Wu, M. J. Su, W. H. Liu, X. Y. Li, and F. J. Liu. 2020. Developing Bronsted-Lewis acids bifunctionalized ionic liquids based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion. Journal of Industrial and Engineering Chemistry 92:200–09. doi:10.1016/j.jiec.2020.09.005.
  • Mahlia, T. M. I., N. Ismail, N. Hossain, and A. S. Silitonga. 2019. Palm oil and its wastes as bioenergy sources: A comprehensive review. Environmental Science and Pollution Research 26 (1):1–18. doi:10.1007/s11356-018-3003-1.
  • Mania, D. J., and J. Havens. 2019. Condensation-curable polyethersilicone tile adhesives. Google Patents.
  • Mumtaz, M.W., A. Adnan, F. Anwar, H. Mukhtar, M.A. Raza, F. Ahmad, U. Rashid. 2012. Response surface methodology: An emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies. 5(9):3307–28. doi:10.3390/en5093307.
  • Narowska, B. E., M. Kułażyński, and M. Łukaszewicz. 2020. Application of activated carbon to obtain biodiesel from vegetable oils. Catalysts 10 (9):1049. doi:10.3390/catal10091049.
  • Nath, B., B. Das, P. Kalita, and S. Basumatary. 2019. Waste to value addition: Utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. Journal of Cleaner Production 239:118112. doi:10.1016/j.jclepro.2019.118112.
  • Nath, B., P. Kalita, B. Das, and S. Basumatary. 2020. Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel. Renewable Energy 151:295–310. doi:10.1016/j.renene.2019.11.029.
  • Navas, M. B., J. F. Ruggera, I. D. Lick, and M. L. Casella. 2020. A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. Bioresources and Bioprocessing 7 (1):1–13. doi:10.1186/s40643-019-0291-3.
  • Okwundu, O. S., A. H. El-Shazly, and M. F. Elkady. 2020. Investigation of the role of egg membrane in CaO synthesis and methods for stable composites syntheses. Arabian Journal for Science and Engineering 45:1–14.
  • Ong, H. C., M. Mofijur, A. Silitonga, D. Gumilang, F. Kusumo, and T. Mahlia. 2020. Physicochemical properties of biodiesel synthesised from grape seed, philippine tung, kesambi, and palm oils. Energies 13 (6):1319. doi:10.3390/en13061319.
  • Pathak, G., D. Das, K. Rajkumari, and L. Rokhum. 2018. Exploiting waste: Towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chemistry 20 (10):2365–73. doi:10.1039/C8GC00071A.
  • Piker, A., B. Tabah, N. Perkas, and A. Gedanken. 2016. A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel 182:34–41. doi:10.1016/j.fuel.2016.05.078.
  • Rafati, A., K. Tahvildari, and M. Nozari. 2019. Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (9):1062–74. doi:10.1080/15567036.2018.1539139.
  • Roschat, W., T. Siritanon, T. Kaewpuang, B. Yoosuk, and V. Promarak. 2016a. Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresource Technology 209:343–50. doi:10.1016/j.biortech.2016.03.038.
  • Roschat, W., T. Siritanon, B. Yoosuk, and V. Promarak. 2016b. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Conversion and Management 108:459–67. doi:10.1016/j.enconman.2015.11.036.
  • Sai, B. A. V. S. L., and B. K. M. Meera. 2019. Optimization and modeling of biodiesel production using fluorite as a heterogeneous catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (15):1862–78. doi:10.1080/15567036.2018.1549165.
  • Santos, S., L. Nobre, J. Gomes, J. Puna, R. Quinta-Ferreira, and J. Bordado. 2019. Soybean oil transesterification for biodiesel production with micro-structured Calcium Oxide (CaO) from natural waste materials as a heterogeneous catalyst. Energies 12 (24):4670. doi:10.3390/en12244670.
  • Silitonga, A.S., T.M.I. Mahlia, F. Kusumo, S. Dharma, A.H. Sebayang, R.W. Sembiring, A.H. Shamsuddin. 2019a. Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation. Renewable Energy 133:520–27. doi:10.1016/j.renene.2018.10.023.
  • Silitonga, A.S., T.M.I. Mahlia, A.H. Shamsuddin, H.C. Ong, J. Milano, F. Kusumo, A.H. Sebayang, S. Dharma, H. Ibrahim, H. Husin, M. Mofijur, S.M.A. Rahman. 2019b. Optimization of cerbera manghas biodiesel production using artificial neural networks integrated with ant colony optimization. Energies. 12(20):3811. doi:10.3390/en12203811.
  • Singh, T. S., and T. N. Verma. 2019. An assessment study of using Turel Kongreng (river mussels) as a source of heterogeneous catalyst for biofuel production. Biocatalysis and Agricultural Biotechnology 20:101185. doi:10.1016/j.bcab.2019.101185.
  • Sreekanth, R., S. Joshi, and R. P. Reddy. 2018. Fuel properties of B100 and blends of Terminalia belerica (Roxb.) oil biodiesel synthesised using SrO as a basic heterogeneous catalyst. Biofuels 1–16. doi:10.1080/17597269.2017.1413859.
  • SÜMER, G. 1976. Seramik Sanayiinde Üretim Teknolojisi. Bilimsel Madencilik Dergisi 15:37–43.
  • Sun, S. D., J. J. Guo, and X. Duan. 2019. Biodiesel preparation from Phoenix tree seed oil using ethanol as acyl acceptor. Industrial Crops and Products 137:270–75. doi:10.1016/j.indcrop.2019.05.035.
  • Syazwani, O. N., U. Rashid, and Y. H. T. Yap. 2015. Low-cost solid catalyst derived from waste cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil. Energy Conversion and Management 101:749–56. doi:10.1016/j.enconman.2015.05.075.
  • Tan, Y. H., M. O. Abdullah, J. Kansedo, N. M. Mubarak, Y. S. Chan, and C. Nolasco-Hipolito. 2019. Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy 139:696–706. doi:10.1016/j.renene.2019.02.110.
  • Troter, D. Z., Z. B. Todorović, D. R. Đokić-Stojanović, L. M. Veselinović, M. V. Zdujić, and V. B. Veljković. 2018. Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil. Journal of Molecular Liquids 266:557–67. doi:10.1016/j.molliq.2018.06.106.
  • Wang, S., R. Shan, Y. Wang, L. Lu, and H. Yuan. 2019. Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. Renewable Energy 130:41–49. doi:10.1016/j.renene.2018.06.047.
  • Wang, S. H., W. F. Yan, and F. Zhao. 2020. Recovery of solid waste as functional heterogeneous catalysts for organic pollutant removal and biodiesel production. Chemical Engineering Journal 401:126104. doi:10.1016/j.cej.2020.126104.
  • Yaşar, F. (2019). Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst: Its effects on some critical fuel properties and comparison with CaO. Elsevier, Fuel, Vol. 255: 115828.
  • Yuliana, M., S.P. Santoso, F.E. Soetaredjo, S. Ismadji, A.E. Angkawijaya, W. Irawaty, Y. Ju, P.L. Tran-Nguyen, S.B. Hartono. 2020. Utilization of waste capiz shell-based catalyst for the conversion of leather tanning waste into biodiesel. Journal of Environmental Chemical Engineering. 8(4):104012. doi:10.1016/j.jece.2020.104012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.