208
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation analysis in a tube heat exchanger integrated with triple blade vortex generator inserts

ORCID Icon, , ORCID Icon & ORCID Icon
Received 13 Oct 2020, Accepted 11 Apr 2021, Published online: 25 Apr 2021

References

  • Akbarzadeh, M., S. Rashidi, A. Keshmiri, and N. Shokri. 2020. “The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis.” Journal of Thermal Analysis and Calorimetry 139 (1): 411–26. doi: 10.1007/s10973-019-08362-x.
  • Bartwal, A., A. Gautam, C. K. Manoj Kumar, Mangrulkar, S. Chamoli, and C. K. Mangrulkar. 2018. “Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring–metal wire net inserts.” Chemical Engineering and Processing: Process Intensification 124: 50–70. doi: 10.1016/j.cep.2017.12.002.
  • Bejan, A. 1980. “Second law analysis in heat transfer.” Energy 5 (8–9): 720–32. doi: 10.1016/0360-5442(80)90091-2.
  • Bejan, A. 1996. “Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes.” Journal of Applied Physics 79 (3): 1191–218. doi: 10.1063/1.362674.
  • Bejan, A., and P. A. Pfister. 1980. “Evaluation of heat transfer augmentation techniques based on their impact on entropy generation.” Letters in Heat and Mass Transfer 7 (2): 97–106. doi: 10.1016/0094-4548(80)90037-5.
  • Bergles, A. E., A. R. Blumenkrantz, and J. Taborek 1974. “Performance evaluation criteria for enhanced heat transfer surfaces” in heat transfer 1974, Proceedings. 5th International Heat Transfer ConferenceJapan Society of Mechanical Engineers., Tokyo 2: 234–38.
  • Bergles, A. E., R. L. Bunn, and G. H. Junkhan. 1974. “Extended performance evaluation criteria for enhanced heat transfer surfaces.” Letters in Heat and Mass Transfer 1 (2): 113–20. doi: 10.1016/0094-4548(74)90147-7.
  • Bhattacharyya, S., B. Hari Raghavendran, and A. R. Paul. 2020. “The effect of circular hole spring tape on the turbulent heat transfer and entropy analysis in a heat exchanger tube: An experimental study.” Experimental Heat Transfer, 1–20. doi: 10.1080/08916152.2020.1787560.
  • Chamoli, S., L. Ruixin, and Y. Peng 2017. “Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts.” Applied Thermal Engineering 121: 1117–34. doi: 10.1016/j.applthermaleng.2017.03.145.
  • Chamoli, S., L. Ruixin, J. Xie, and Y. Peng 2018. “Numerical study on flow structure and heat transfer in a circular tube integrated with novel anchor shaped inserts.” Applied Thermal Engineering 135 (February): 304–24. doi: 10.1016/j.applthermaleng.2018.02.052.
  • Chaurasia, S. R., and R. M. Sarviya. 2019. “Experimental thermal performance analysis of fluid flow in a heat exchanger pipe with novel double strip helical screw tape inserts for utilization of energy resources.” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, October: 1–14. doi: 10.1080/15567036.2019.1669741.
  • Feizabadi, A., M. Khoshvaght-Aliabadi, and A. B. Rahimi. 2019. “Experimental evaluation of thermal performance and entropy generation inside a twisted U-tube equipped with twisted-tape inserts.” International Journal of Thermal Sciences 145: 106051. doi: 10.1016/j.ijthermalsci.2019.106051.
  • Huang, S., H. Chen, X. Zhang, Z. Wan, and Y. Tang. 2019. “Experimental evaluation of thermal performance in a circular tube with y-branch insert.” International Communications in Heat and Mass Transfer 106 (May): 15–21. doi: 10.1016/j.icheatmasstransfer.2019.04.004.
  • Kathait, P. S., and A. K. Patil. 2014. “Thermo-hydraulic performance of a heat exchanger tube with discrete corrugations.” Applied Thermal Engineering 66 (1–2): 162–70. doi: 10.1016/j.applthermaleng.2014.01.069.
  • Keklikcioglu, O., and V. Ozceyhan. 2017. “Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts.” Energy 139: 65–75. doi: 10.1016/j.energy.2017.07.145.
  • Khanmohammadi, S., and N. Mazaheri. 2019. “Second law analysis and multi-criteria optimization of turbulent heat transfer in a tube with inserted single and double twisted tape.” International Journal of Thermal Sciences 145: 105998. doi: 10.1016/j.ijthermalsci.2019.105998.
  • Kline, S. J., and F. A. McClintock. 1953. “Describing uncertainties in single sample experiments.” Mechanical Engineering 75: 385–87.
  • Kumar, A., S. Chamoli, and M. Kumar. 2016. “Experimental investigation on thermal performance and fluid flow characteristics in heat exchanger tube with solid hollow circular disk inserts.” Applied Thermal Engineering 100: 227–36. 10.1016/j.applthermaleng.2016.01.081.
  • Kumar, B., M. Kumar, A. K. Patil, and S. Jain. 2019a. “Effect of V cut in perforated twisted tape insert on heat transfer and fluid flow behavior of tube flow: an experimental study.” Experimental Heat Transfer 32 (6): 524–44. 10.1080/08916152.2018.1545808.
  • Kumar, B., A. K. Patil, S. Jain, and M. Kumar. 2019b. “Study of entropy generation in heat exchanger tube with multiple v cuts in perforated twisted tape insert.” Journal of Heat Transfer 141 (8). 10.1115/1.4043769. 8
  • Kumar, P., A. Kumar, S. Chamoli, and M. Kumar. 2016. “Experimental investigation of heat transfer enhancement and fluid flow characteristics in a protruded surface heat exchanger tube.” Experimental Thermal and Fluid Science 71: 42–51. 10.1016/j.expthermflusci.2015.10.014.
  • Kumar, R., and P. Chandra. 2020. “Thermal analysis, pressure drop and exergy loss of energy efficient shell, and triple meshed helical coil tube heat exchanger.” Energy Sources, Part A: Recovery, Utilization and Environmental Effects 42 (8): 1026–39. 10.1080/15567036.2019.1602213.
  • Kurnia, J. C., Seyed Ali Ghoreishi-Madiseh, A. P. Sasmito, and A. P. Ghoreishi-Madiseh. 2020. “Heat transfer and entropy generation in concentric/eccentric double-pipe helical heat exchangers.” Heat Transfer Engineering 41 (18): 1552–75. 10.1080/01457632.2019.1661666.
  • Maithani, R., and A. Kumar. 2020. “Correlations development for nusselt number and friction factor in a dimpled surface heat exchanger tube.” Experimental Heat Transfer 33 (2): 101–22. 10.1080/08916152.2019.1573863.
  • Nakhchi, M. E., and J. A. Esfahani. 2019. “Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers.” Applied Thermal Engineering 156 (October 2018): 494–505. 10.1016/j.applthermaleng.2019.04.067.
  • Nakhchi, M. E., J. A. Esfahani, and K. C. Kim. 2020. “Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts.” International Journal of Heat and Mass Transfer 148. 10.1016/j.ijheatmasstransfer.2019.119143.
  • Nanan, K., C. Thianpong, M. Pimsarn, V. Chuwattanakul, and S. Eiamsa-ard. 2017. “Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators.” Applied Thermal Engineering 114: 130–47. 10.1016/j.applthermaleng.2016.11.153.
  • Paoletti, S., F. Rispoli, and E. Sciubba. 1989. “Calculation of exergetic losses in compact heat exchanger passages.” Asme Aes 10 (2), pp. 21–29.
  • Sepehr, M., S. S. Hashemi, M. Rahjoo, V. Farhangmehr, and A. Alimoradi. 2018. “Prediction of heat transfer, pressure drop and entropy generation in shell and helically coiled finned tube heat exchangers.” Chemical Engineering Research & Design 134: 277–91. 10.1016/j.cherd.2018.04.010.
  • Singh, S. K., M. Kumar, A. Kumar, A. Gautam, and S. Chamoli. 2018. “Thermal and friction characteristics of a circular tube fitted with perforated hollow circular cylinder inserts.” Applied Thermal Engineering 130 (October): 230–41. 10.1016/j.applthermaleng.2017.10.090.
  • Singh, V., S. Chamoli, M. Kumar, and A. Kumar. 2016. “Heat transfer and fluid flow characteristics of heat exchanger tube with multiple twisted tapes and solid rings inserts.” Chemical Engineering and Processing: Process Intensification 102: 156–68. 10.1016/j.cep.2016.01.013.
  • Webb, R. L. 1981. “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design.” International Journal of Heat and Mass Transfer 24 (4): 715–26. 10.1016/0017-9310(81)90015-6.
  • Webb, R. L., and E. R. G. Eckert. 1972. “Application of rough surfaces to heat exchanger design.” International Journal of Heat and Mass Transfer 15 (9): 1647–58. 10.1016/0017-9310(72)90095-6.
  • Webb, R. L., and M. J. Scott. 1980. “A parametric analysis of the performance of internally finned tubes for heat exchanger application.” Journal of Heat Transfer 102 (1): 38–43. 10.1115/1.3244245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.