256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel Python-based “ all-regressor model ” application for photovoltaic plant-specific yield estimation and systematic analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 10 Feb 2021, Accepted 20 Apr 2021, Published online: 17 Jun 2021

References

  • Abraham, A., P. Krömer, and V. Snášel, “Afro-European conference for industrial advancement: Proceedings of the first international Afro-European conference for industrial advancement AECIA 2014,” Adv. Intell. Syst. Comput., vol. 334, pp. 371–81, 2015.
  • Ağbulut, Ü., A. E. Gürel, and Y. Biçen. July 2020. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable Sustainable Energy Review 135:2021.
  • Ahmad, M. W., J. Reynolds, and Y. Rezgui. 2018. Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production 203:810–21. doi:10.1016/j.jclepro.2018.08.207.
  • Ahmad, M. W., M. Mourshed, and Y. Rezgui. 2018. Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy 164:465–74. doi:10.1016/j.energy.2018.08.207.
  • Ait Hammou, B., A. Ait Lahcen, and S. Mouline. 2020. Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics. Informatin Processing and Management 57 (1):102122. doi:10.1016/j.ipm.2019.102122.
  • Almeida, M. P., O. Perpiñán, and L. Narvarte. 2015. PV power forecast using a nonparametric PV model. Solar Energy 115:354–68. doi:10.1016/j.solener.2015.03.006.
  • Al-Qahtani, F. H., and S. F. Crone. 2013. Multivariate k-nearest neighbour regression for time series data - A novel algorithm for forecasting UK electricity demand. Proceedings International Journal Conference Neural Networks.
  • AlSkaif, T., S. Dev, L. Visser, M. Hossari, and W. Van Sark. 2020. A systematic analysis of meteorological variables for PV output power estimation. Renewable Energy 153:12–22. doi:10.1016/j.renene.2020.01.150.
  • Babatunde, A. A., and S. Abbasoglu. 2019. Predictive analysis of photovoltaic plants specific yield with the implementation of multiple linear regression tool. Environmental Progress and Sustainable Energy 38 (4):1–9. doi:10.1002/ep.13098.
  • Bamisile, O., A. Oluwasanmi, S. Obiora, E. Osei-mensah, G. Asoronye, and Q. Huang. 2020b. Application of deep learning for solar irradiance and solar photovoltaic multi-parameter forecast. Energy Sources Part A Recover Utilisation Environmental Efficiency 0–21.
  • Bamisile, O., F. Olubiyo, M. Dagbasi, H. Adun, and I. Wole-Osho. 2019. Economic analysis and performance of PV plants: An application in Kurdistan region of Iraq. International Journal Renewable Energy Development 8 (3):293–301. doi:10.14710/ijred.8.3.293-301.
  • Bamisile, O., Q. Huang, M. Dagbasi, V. Adebayo, H. Adun, and W. Hu. 2020a. Steady-state and process modeling of a novel wind-biomass comprehensive energy system: An energy conservation, energy and performance analysis. Energy Conversion Management 220:113139. doi:10.1016/j.enconman.2020.113139.
  • Behera, M. K., and N. Nayak. 2019. A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm. Engineers Science Technology an International Journal 23 (1):156–67. doi:10.1016/j.jestch.2019.03.006.
  • Bowden, G. J., H. R. Maier, and G. C. Dandy. 2002. Optimal division of data for neural network models in water resources applications. Water Resources Research 38 (2):2-1-2–11. doi:10.1029/2001WR000266.
  • Bräunl, T., B. McCane, M. Rivera, and X. Yu. 2016. Image and video technology. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9431:721–33.
  • Campillo-Gimenez, B., W. Jouini, S. Bayat, M. Cuggia, and R. L. Patterson. 2013. Improving case-based reasoning systems by combining K-nearest neighbour algorithm with logistic regression in the prediction of patients’ registration on the renal transplant waiting list. PLoS One 8 (9):e71991. doi:10.1371/journal.pone.0071991.
  • Chai, M., F. Xia, S. Hao, D. Peng, C. Cui, and W. Liu. 2019. PV power prediction based on LSTM with adaptive hyperparameter adjustment. IEEE Access 7:115473–86. doi:10.1109/ACCESS.2019.2936597.
  • Chen, C., S. Duan, T. Cai, and B. Liu. 2011. Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy 85 (11):2856–70. doi:10.1016/j.solener.2011.08.027.
  • Das, S. 2020. Short term forecasting of solar radiation and power output of 89.6kWp solar PV power plant. Materials Today Proceedings.
  • Ebaid, M. S. Y., A. M. Ghrair, and M. Al-Busoul. 2018. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Conversion Management 155:324–43. doi:10.1016/j.enconman.2017.10.074.
  • Elsinga, B., and W. G. J. H. M. Van Sark. 2017. Short-term peer-to-peer solar forecasting in a network of photovoltaic systems. Applied Energy 206:1464–83. September. doi:10.1016/j.apenergy.2017.09.115.
  • F. and J. H. Jr, “Discriminatory analysis, nonparametric discrimination. USAF school of aviation medicine, randolph field, tex,” Proj. 21-49-004, Rept. 4, Contract AF41 (128)-311951 2020.
  • Fujino, Y., H. Murata, C. Mayama, and R. Asaoka. 2015. Applying ‘Lasso’ regression to predict future visual field progression in glaucoma patients. Investigations Ophthalmology Vision Science 56 (4):2334–39. doi:10.1167/iovs.15-16445.
  • Gielen, D., F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini. 2018. The role of renewable energy in the global energy transformation. Energy Strategy Review 24:38–50. June . doi:10.1016/j.esr.2019.01.006.
  • Gouda, S. G., Z. Hussein, S. Luo, and Q. Yuan. 2019. Model selection for accurate daily global solar radiation prediction in China. Journal of Cleaner Production 221:132–44. doi:10.1016/j.jclepro.2019.02.211.
  • Hans, C. 2011. Elastic net regression modeling with the orthant normal prior. Journal of the American Statistical Association 106 (496):1383–93. doi:10.1198/jasa.2011.tm09241.
  • Hossain, M., S. Mekhilef, M. Danesh, L. Olatomiwa, and S. Shamshirband. 2017. Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems. Journal of Cleaner Production 167:395–405. doi:10.1016/j.jclepro.2017.08.081.
  • Hussain, S., and A. Al Alili. 2017. A pruning approach to optimize synaptic connections and select relevant input parameters for neural network modelling of solar radiation. Application and Software Computure Journal 52:898–908. doi:10.1016/j.asoc.2016.09.036.
  • IRENA. 2018. Global energy transformation, a roadmap to 2050. Tech. rep., IRENA.
  • Jang, H. S., K. Y. Bae, H. S. Park, and D. K. Sung. 2016. Solar power prediction based on satellite images and support vector machine. IEEE Transactions on Sustainable Energy 7 (3):1255–63. doi:10.1109/TSTE.2016.2535466.
  • Jung, Y., J. Jung, B. Kim, and S. U. Han. 2020. Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. Journal of Cleaner Production 250:119476. doi:10.1016/j.jclepro.2019.119476.
  • Khandakar, A., M. E. H. Chowdhury, M. Khoda Kazi, K. Benhmed, F. Touati, M. Al-Hitmi, A. Jr S. P. Gonzales. 2019. Machine learning based photovoltaics (PV) power prediction using different environmental parameters of Qatar. Energies. 12(14):2782. doi:10.3390/en12142782.
  • Kumar, S., and T. Kaur. 2015. Development of ANN Based Model for Solar Potential Assessment Using Various Meteorological Parameters. Energy Procedia 90:587–92. December . doi:10.1016/j.egypro.2016.11.227.
  • Kumar, S., and T. Kaur. 2020. Efficient solar radiation estimation using cohesive artificial neural network technique with optimal synaptic weights. Proceedings Instrumentation Mechanical Engineers Part A Journal Power Energy 234 (6):862–73. doi:10.1177/0957650919878318.
  • Lin, K. P., and P. F. Pai. 2016. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. Journal of Cleaner Production 134:456–62. Part B. doi:10.1016/j.jclepro.2015.08.099.
  • Manandhar, S., S. Dev, Y. H. Lee, S. Winkler, and Y. S. Meng, “School of electrical and electronic engineering, Nanyang technological university, Singapore ADAPT centre, school of computer science and statistics, Trinity College Dublin, Ireland Advanced Digital Sciences Center (ADSC), university of Illinois at,” no. 2, pp. 3035–38, 2018.
  • Mellit, A., and A. M. Pavan. 2010. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy 84 (5):807–21. doi:10.1016/j.solener.2010.02.006.
  • Mishra, M., P. Byomakesha Dash, J. Nayak, B. Naik, and S. Kumar Swain. 2020. Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement Journal International Measurement Confedence 166.
  • Muthukrishnan, R., and R. Rohini, “LASSO: A feature selection technique in predictive modeling for machine learning,” 2016 IEEE Int. Conf. Adv. Comput. Appl. ICACA 2016, pp. 18–20, 2017.
  • Najm, S., and K. Matsumoto. 2020. Does renewable energy substitute LNG international trade in the energy transition? Energy Economics 92:104964. doi:10.1016/j.eneco.2020.104964.
  • Pepe, D., G. Bianchini, and A. Vicino August 2017. Model estimation for solar generation forecasting using cloud cover data. Solar Energy 157:1032–46. doi: 10.1016/j.solener.2017.08.086.
  • Roth, V. 2004. The generalized LASSO. IEEE Transaction Neural Networks 15 (1):16–28. doi:10.1109/TNN.2003.809398.
  • Sang, L., W. Ai, Y. Wu, and C. Ma. 2020. Enhanced specific heat and thermal conductivity of ternary carbonate nanofluids with carbon nanotubes for solar power applications. International Journal Energy Resources 44 (1):334–43. doi:10.1002/er.4923.
  • Semero, Y. K., D. Zheng, and J. Zhang. 2018. A PSO-ANFIS based hybrid approach for short term PV power prediction in microgrids. Electric Power Components System 46 (1):1–9. doi:10.1080/15325008.2018.1433733.
  • Shuvho, M. B. A., M. A. Chowdhury, S. Ahmed, and M. A. Kashem. 2019. Prediction of solar irradiation and performance evaluation of grid connected solar 80KWp PV plant in Bangladesh. Energy Reports 5:714–22. doi:10.1016/j.egyr.2019.06.011.
  • Solangi, K. H., M. R. Islam, R. Saidur, N. A. Rahim, and H. Fayaz. 2011. A review on global solar energy policy. Renewable and Sustainable Energy Reviews 15 (4):2149–63. doi:10.1016/j.rser.2011.01.007.
  • Tang, N., S. Mao, Y. Wang, and R. M. Nelms. 2018. Solar power generation forecasting with a LASSO-based approach. IEEE Internet Things Journal 5 (2):1090–99. doi:10.1109/JIOT.2018.2812155.
  • Varoquaux, G., L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller. 2015. Scikit-learn. GetMobile Mobile Computer Communication 19 (1):29–33. doi:10.1145/2786984.2786995.
  • Vural, G. 2020. How do output, trade, renewable energy and non-renewable energy impact carbon emissions in selected Sub-Saharan African Countries? Resource Policy 69:101840. doi:10.1016/j.resourpol.2020.101840.
  • Wang, L., O. Kisi, M. Zounemat-Kermani, G. A. Salazar, Z. Zhu, and W. Gong. 2016. Solar radiation prediction using different techniques: Model evaluation and comparison. Renewable Sustainable Energy Review 61:384–97. doi:10.1016/j.rser.2016.04.024.
  • Wang, Z., and I. Koprinska. 2017. Solar power prediction with data source weighted nearest neighbors. Proceedings International Journal Conference Neural Networks -May. 1411–18.
  • WenminQin, L. Wang, C. A. Gueymard, M. Bilal, A. Lin, J. Wei, M. Zhang, X. Yang, et al. 2019. Constructing a gridded direct normal irradiance dataset in China during 1981–2014. Renewable Sustainable Energy Review 131: 110004. May . doi:10.1016/j.rser.2020.110004.
  • Wu, C. L., and K. W. Chau. 2013. Prediction of rainfall time series using modular soft computingmethods. Engineering Applications of Artificial Intelligence 26 (3):997–1007. doi:10.1016/j.engappai.2012.05.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.