221
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Application of stacked and bidirectional long short-term memory deep learning models for wind speed forecasting at an offshore site

ORCID Icon, &
Received 28 Dec 2020, Accepted 28 Apr 2021, Published online: 24 Aug 2021

References

  • Ahsbahs, T., M. Badger, P. Volker, K. S. Hansen, and C. B. Hasager. 2018 August 24. Applications of satellite winds for the offshore wind farm site Anholt. Wind Energy Science 3 (no. 2):573–88. doi:10.5194/wes-3-573-2018.
  • Alkhayat, G., and R. Mehmood. 2021. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy and AI 4 (June):100060. doi:10.1016/j.egyai.2021.100060.
  • Altan, A., S. Karasu, and E. Zio. 2021. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing 100 (March):106996. doi:10.1016/j.asoc.2020.106996.
  • Bilgili, M., A. Yasar, and E. Simsek. 2011 February. Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and Sustainable Energy Reviews 15(no. 2):905–15. doi:10.1016/j.rser.2010.11.006.
  • Chen, J., G.-Q. Zeng, W. Zhou, W. Du, and K.-D. Lu. 2018. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. Energy Conversion and Management 165 (June):681–95. doi:10.1016/j.enconman.2018.03.098.
  • Chen, M.-R., G.-Q. Zeng, K.-D. Lu, and J. Weng. 2019 August. A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet of Things Journal 6(no. 4):6997–7010. doi:10.1109/JIOT.2019.2913176.
  • Chen, Y., Z. Dong, Y. Wang, J. Su, Z. Han, D. Zhou, K. Zhang, Y. Zhao, and Y. Bao. 2021 January. Short-term wind speed predicting framework based on EEMD-GA-LSTM method under large scaled wind history. Energy Conversion and Management 227:113559. doi:10.1016/j.enconman.2020.113559
  • Chien, J.-T.2019. Deep neural network. In Source separation and machine learning, 259–320. London: Academic Press. doi:10.1016/B978-0-12-804566-4.00019-X.
  • Chollet, F. 2018. Deep Learning with Python. Shelter Island, New York: Manning Publications Co.
  • Dhiman, H. S., D. Deb, and V. E. Balas. 2020. Paradigms in wind forecasting.In Supervised machine learning in wind forecasting and ramp event prediction, 23–39. London: Academic Press. https://doi.org/10.1016/B978-0-12-821353-7.00014-4
  • Dong, Y., J. Wang, L. Xiao, and T. Fu. 2021 January. Short-term wind speed time series forecasting based on a hybrid method with multiple objective optimization for non-convex target. Energy 215:119180. doi:10.1016/j.energy.2020.119180
  • Duan, J., H. Zuo, Y. Bai, J. Duan, M. Chang, and B. Chen. 2021 February. Short-term wind speed forecasting using recurrent neural networks with error correction. Energy 217:119397. doi:10.1016/j.energy.2020.119397
  • Hochreiter, S., and J. Schmidhuber. 1997 November 15. Long Short Term Memory. Neural Computation 9(no. 8): 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735
  • Liu, H., and C. Chen. 2019. Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction. Applied Energy 254 (November):113686. doi:10.1016/j.apenergy.2019.113686.
  • Liu, H., R. Yang, T. Wang, and L. Zhang. 2021. A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections. Renewable Energy 165 (March):573–94. doi:10.1016/j.renene.2020.11.002.
  • Liu, H., X. Mi, Y. Li, Z. Duan, and Y. Xu. 2019b. Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression. Renewable Energy 143 (December):842–54. doi:10.1016/j.renene.2019.05.039.
  • Liu, H., Z. Duan, and C. Chen. 2020. Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder. Applied Energy 280 (December):115975. doi:10.1016/j.apenergy.2020.115975.
  • Liu, H., Z. Duan, C. Chen, and H. Wu. 2019a. A novel two-stage deep learning wind speed forecasting method with adaptive multiple error corrections and bivariate dirichlet process mixture model. Energy Conversion and Management 199 (November):111975. doi:10.1016/j.enconman.2019.111975.
  • Liu, X., H. Zhang, X. Kong, and K. Y. Lee. 2020. Wind speed forecasting using deep neural network with feature selection. Neurocomputing 397 (July):393–403. doi:10.1016/j.neucom.2019.08.108.
  • Ma, T., C. Wang, J. Wang, J. Cheng, and X. Chen. 2019. Particle-swarm optimization of ensemble neural networks with negative correlation learning for forecasting short-term wind speed of wind farms in Western China. Information Sciences 505 (December):157–82. doi:10.1016/j.ins.2019.07.074.
  • Moreno, S. R., V. C. Mariani, L.S. Coelho. 2021. Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian Northeast. Renewable Energy 164 (February):1508–26. doi:10.1016/j.renene.2020.10.126.
  • Neill, S. P., and M. R. Hashemi. 2018. Offshore wind. In Fundamentals of ocean renewable energy, 83–106. London: Academic Press. doi:10.1016/B978-0-12-810448-4.00004-5.
  • NIWE. 2021. National Institute of Wind Energy. https://niwe.res.in/.
  • Orsted. 2020. Offshore wind data. https://orsted.com/en/our-business/offshore-wind/wind-data
  • Peng, Z., S. Peng, L. Fu, B. Lu, J. Tang, K. Wang, and W. Li. 2020. A novel deep learning ensemble model with data denoising for short-term wind speed forecasting. Energy Conversion and Management 207 (March):112524. doi:10.1016/j.enconman.2020.112524.
  • Santhosh, M., C. Venkaiah, and D. M. V. Kumar. 2020 June. Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: A review. Engineering Reports 2(no. 6):e12178. doi:10.1002/eng2.12178.
  • Vieira, S., W. H. L. Pinaya, and A. Mechelli. 2020. Main concepts in machine learning. In Machine learning,ed. A. Mechelli and S. Vieira, 21–44. London: Academic Press. doi:10.1016/B978-0-12-815739-8.00002-X.
  • Wang, K., W. Fu, T. Chen, B. Zhang, D. Xiong, and P. Fang. 2020. A compound framework for wind speed forecasting based on comprehensive feature selection, quantile regression incorporated into convolutional simplified long short-term memory network and residual error correction. Energy Conversion and Management 222 (October):113234. doi:10.1016/j.enconman.2020.113234.
  • Wu, C., J. Wang, X. Chen, P. Du, and W. Yang. 2020. A novel hybrid system based on multi-objective optimization for wind speed forecasting. Renewable Energy 146 (February):149–65. doi:10.1016/j.renene.2019.04.157.
  • Xiang, L., J. Li, A. Hu, and Y. Zhang. 2020. Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method. Energy Conversion and Management 220 (September):113098. doi:10.1016/j.enconman.2020.113098.
  • Yan, X., Y. Liu, Y. Xu, and M. Jia. 2020. Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition. Energy Conversion and Management 225 (December):113456. doi:10.1016/j.enconman.2020.113456.
  • Yang, X.-S. 2019. Neural networks and deep learning. In Introduction to algorithms for data mining and machine learning, 139–61. London: Academic Press. doi:10.1016/B978-0-12-817216-2.00015-6.
  • Chen, Y., S. Zhang, W. Zhang, J. Peng, and Y. Cai. 2019 April. Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting. Energy Conversion and Management 185:783–99. https://doi.org/10.1016/j.enconman.2019.02.018
  • Yu, Y., X. Si, C. Hu, and J. Zhang. 2019 July. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation 31(no. 7):1235–70. doi:10.1162/neco_a_01199.
  • Zhang, G., and D. Liu. 2020. Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting. Energy Conversion and Management 226 (December):113500. doi:10.1016/j.enconman.2020.113500.
  • Zhao, F., G.-Q. Zeng, and K.-D. Lu. 2020 January. EnLSTM-WPEO: short-term traffic flow prediction by ensemble LSTM, NNCT weight integration, and population extremal optimization. IEEE Transactions on Vehicular Technology 69(no. 1):101–13. doi:10.1109/TVT.2019.2952605.
  • Zhao, X., N. Jiang, J. Liu, D. Yu, and J. Chang. 2020. Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework. Energy Conversion and Management 203 (January):112239. doi:10.1016/j.enconman.2019.112239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.