150
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Development of an effective solid base catalyst from potassium based chicken bone (K-CBs) composite for biodiesel production from a mixture of non-edible feedstocks

&
Received 13 Jan 2021, Accepted 30 Apr 2021, Published online: 12 May 2021

References

  • Ali, C. H., A. H. Asif, T. Iqbal, A. S. Qureshi, M. A. Kazmi, S. Yasin, and B. Z. Mu. 2018. Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (9):1076–83. doi:10.1080/15567036.2018.1469691.
  • AlSharifi, M., and H. Znad. 2019. Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production. Renewable Energy 136:856–64. doi:10.1016/j.renene.2019.01.052.
  • AlSharifi, M., and H. Znad. 2020. Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst Renewable Energy 151:740–49. doi:10.1016/j.renene.2019.11.071.
  • Ayodeji, A. A., I. E. Blessing, and F. O. Sunday. 2018. Data on calcium oxide and cow bone catalysts used for soybean biodiesel production. Data in Brief 18:512–17. doi:10.1016/j.dib.2018.03.057.
  • Ayoob, A., and K. Fadhil. 2020. Valorization of waste tires in the synthesis of an effective carbon based catalyst for biodiesel production from a mixture of non-edible oils. Fuel 264:116754. doi:10.1016/j.fuel.2019.116754.
  • Ayoob, A. K., and A. B. Fadhil. 2019. Biodiesel production through transesterification of a mixture of non-edible oils over lithium supported on activated carbon derived from scrap tires. Energy Conversion and Management 201:112149. doi:10.1016/j.enconman.2019.112149
  • Ayoob, A. K., and A. B. Fadhil. 2019. Biodiesel production through transesterification of a mixture of non-edible oils over lithium supported on activated carbon derived from scrap tires. Energy Conversion and Management 201:112149. doi:10.1016/j.enconman.2019.112149.
  • Bindhu, C. H., J. R. C. Reddy, B. V. S. K. Rao, T. Ravinder, P. P. Chakrabarti, M. S. L. Karuna, and R. B. N. Prasad. 2012. Preparation and evaluation of biodiesel from Sterculia foetida seed oil. Journal of the American Oil Chemists’ Society 89 (5):891–96. doi:10.1007/s11746-011-1969-7.
  • Chiong, M., A. Valera-Medin, W. W. F. Chong, C. T. Chong, G. R. Mong, and M. N. Mohd Jaafar. 2020. Effects of swirler vane angle on palm biodiesel/natural gas combustion in swirl-stabilised gas turbine combustor. Fuel 277:118213. doi:10.1016/j.fuel.2020.118213.
  • Demirbas, A. 2008. Relationships derived from physical properties of vegetable oil and biodiesel Fuels. Fuel 87 (8–9):1743–48. doi:10.1016/j.fuel.2007.08.007.
  • Fadhil, A. B., and A. I. Ahmed. 2016. Ethanolysis of fish oil via optimized protocol and purification by dry washing of crude ethyl esters. Journal of the Taiwan Institute of Chemical Engineers 58:71–83. doi:10.1016/j.jtice.2015.06.010.
  • Fadhil, A. B., A. M. Aziz, and M. H. Altamer. 2018. Optimization of methyl esters production from non-edible oils using activated carbon supported potassium hydroxide as a solid base catalyst. Arab Journal of Basic and Applied Sciences 25 (2):56–65. doi:10.1080/25765299.2018.1449414.
  • Fadhil, A. B., E. T. Al-Tikrity, and K. K. Ibraheem. 2019. Transesterification of bitter almond oil as a new non-edible feedstock with mixed alcohols system: Parameter optimization and analysis of biodiesel. Waste and Biomass Valorization 10(6): 1597-1608.
  • Fadhil, A.B., Ahmed, A.I. (2018). Production of mixed methyl/ethyl esters from waste fish oil through transesterification with mixed methanol/ethanol system. Chemical Engineering Communications 205(9): 1157–1166.
  • Fadhil, A.B., Saeed, I.K., Saeed, L.I., Altamer, M.H. 2016. Co-solvent ethanolysis of chicken waste: Optimization of parameters and characterization of biodiesel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects38(19): 2883–2890.
  • Farooq, M., A. Ramli, and A. Naeem. 2015. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy 76:362–68. doi:10.1016/j.renene.2014.11.042.
  • Gupta, A. R., and V. K. Rathod. 2018. Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: Optimization and kinetics. Waste Management 79:169–78. doi:10.1016/j.wasman.2018.07.022.
  • Jamil, F., P. Sahay, M. Kumar, L. Al-Haj, M. T. Z. Myint, and A. H. Al-Muhtaseb. 2020. Heterogeneous carbon-based catalyst modified by alkaline earth metal oxides for biodiesel production: Parametric and kinetic study. Energy Conversion and Management X 10 ,2021, 100047,1–10.
  • Kaur N, Ali A. 2015. Preparation and application of Ce@ZrO2–TiO2@SO4-2 as solid catalyst for the esterification of fatty acids. Renewable Energy81:421–31. http://www.sciencedirect.com/science/article/pii/S0960148115002335
  • Khan, H. M., T. Iqbal, C. H. Ali, A. Javaid, and I. Q. Cheema. 2020. Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel 277:118091. doi:10.1016/j.fuel.2020.118091.
  • Kolhe, N. S., A. R. Gupta, and V. K. Rathod. 2017. Production and purification of biodiesel produced from used frying oil using hydrodynamic cavitation. Resource-Efficient Technologie 3 (2):198–203. doi:10.1016/j.reffit.2017.04.008.
  • Krisnangkura, K. 1986. A simple method for estimation of cetane index of vegetable oil methyl esters. JAOCS 3:55–56.
  • Manigandan, S., P. Gunasekar, T. R. Praveenkumar, J. S. M. Sabir, T. Mathimani, A. Pugazhendhi, and K. Brindhadevi. 2021. Performance, noise and emission characteristics of DI engine using canola and Moringa oleifera biodiesel blends using soluble multiwalled carbon nanotubes. Fuel 289:119829. doi:10.1016/j.fuel.2020.119829.
  • Niju, S., C. Anushya, and M. Balajii. 2019. Process optimization for biodiesel production from Moringa oleifera oil using conch shells as heterogeneous catalyst. Environmental Progress & Sustainable Energy 38 (3):e13015. doi:10.1002/ep.13015.
  • Nisar, J., R. Razaq, M. Farooq, M. Iqbal, R. A. Khan, M. Sayed, and I. Rahman. 2017. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renewable Energy 101:111–19. doi:10.1016/j.renene.2016.08.048.
  • Paquot, C. 1979. Standard methods for the analysis of oils, fats and derivatives, 1–170. 6th ed. Oxford, UK: Pergomon Press.
  • Pradhan, P., and R. Chakraborty. 2018. Optimal efficient biodiesel synthesis from used oil employing low-cost ram bone supported Cr catalyst: Engine performance and exhaust assessment. Energy 64:35–45. doi:10.1016/j.energy.2018.08.181.
  • Rahman, M. A. 2018. Valorization of harmful algae E. compressa for biodiesel production in presence of chicken waste derived catalyst. Renewable Energy 129:132–40. doi:10.1016/j.renene.2018.06.005.
  • Samani, M. A., B. H. Samani, A. Lotfalian, S. Rostami, G. Najafi, E. Fayyazi, and R. Mamat. 2020. The feasibility and optimization of biodiesel production from Celtis australis L. oil using chicken bone catalyst and ultrasonic waves. Biofuels 11 (4):513–21. doi:10.1080/17597269.2019.1628482.
  • Satraidi, H., H. Widayat, A. Prasetyaningrum, N. Jufriyah, and A. S. Dewi,R.O.N. Development of heterogeneous catalyst from chicken bone and catalytic testing for biodiesel with simultaneous Processing 13th Joint Conference on Chemistry (13th JCC) IOP Conf. Series: Materials Science and Engineering 509 (2019) 012125 Indonesia: IOP Publishing doi:10.1088/1757-899X/509/1/012125.
  • Suwannasom, P., P. Tansupo, and C. Ruangviriyachai. 2016. Chciken bone-based catalyst for biodiesel production from waste cooking oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (21):3167–73. doi:10.1080/15567036.2015.1137998.
  • Tan, Y. H., M. O. Abdullah, C. Nolasco-Hipolito, and N. S. A. Zauzi. 2017. Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renew. Energy 114:437–47. doi:10.1016/j.renene.2017.07.024.
  • Tan, Y. H., M. O. Abdullah, J. Kansedo, N. M. Mubarak, Y. San Chan, and C. Nolasco-Hipolito. 2019. Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy 139:696–706. doi:10.1016/j.renene.2019.02.110.
  • Tang, Y., G. Chen, J. Zhang, and Y. Lu. 2011. Highly active CaO for the transesterification to biodiesel production from rapeseed oil. Bulletin of the Chemical Society of Ethiopia 25 (1):37–42. doi:10.4314/bcse.v25i1.63359.
  • Tang, Y., H. Liu, H. Ren, Q. Cheng, Y. Cui, and J. Zhang. 2019. Development KCl/CaO as a catalyst for biodiesel production by tri‐component coupling transesterification. Environmental Progress & Sustainable Energy 38 (2):647–53. doi:10.1002/ep.12977.
  • Thoai, D. N., C. Tongurai, K. Prasertsit, and A. Kumar. 2019. Review on biodiesel production by two-step catalytic conversion. Biocatalysis and Agricultural Biotechnology 18:101023. doi:10.1016/j.bcab.2019.101023.
  • Yusuff, A. S., and J. O. Owolabi. 2019. Synthesis and characterization of alumina supported coconut chaff catalyst for biodiesel production from waste frying oil. South African Journal of Chemical Engineering 30:42–49. doi:10.1016/j.sajce.2019.09.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.