150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impacts of the horizontal swirl and axial tumble on the turbulent kinetic energy and combustion process of a natural gas engine

ORCID Icon, ORCID Icon, , , &
Received 14 Oct 2020, Accepted 30 Jul 2021, Published online: 17 Aug 2021

References

  • Alper, T. C., O. T. Ozgur, and M. Rafig. 2018. Numerical investigation of twin swirl application in diesel engine combustion. Fuel 224:101–10. doi:10.1016/j.fuel.2018.03.049.
  • Arcoumanis, C., S. N. Godwin, and J. W. Kim: Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-cylinder, Four-valve, Spark-ignition Engine. SAE Technical Paper 981044 1998. 10.4271/981044
  • Bari, S., and I. Saad. 2013. CFD modelling of the effect of guide vane swirl and tumble device to generate better in-cylinder air flow in a CI engine fuelled by biodiesel. Comput. Fluids 84:262–69. doi:10.1016/j.compfluid.2013.06.011.
  • Broatch, A., P. Olmeda, A. García, J. Salvador-Iborra, and A. J. E. Warey. 2017. Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy 119:1010–23. doi:10.1016/j.energy.2016.11.040.
  • Cameretti, M., De Bellis, V., Romagnuolo, L., Iorio, A., Maresca, L, “3D CFD Analyses of Intake Duct Geometry Impact on Tumble Motion and Turbulence Production in SI Engines,” SAE Technical Paper 2017-01-2199, 2017, doi:10.4271/2017-01-2199.
  • Chen, L., Wei, H.Q., Chen, C.Y., Feng, D.Q., Zhou, L., Pan, J.Y. 2019. Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine. Energy 166:318–25. doi:10.1016/j.energy.2018.10.058.
  • Chen, Z.M., Wang, L., Yuan, X.N., Duan, Q.M., Yang, B., Zeng, K. 2019. Experimental investigation on performance and combustion characteristics of spark-ignition dual-fuel engine fueled with methanol/natural gas. Appl. Therm. Eng 150 (5):164–74. doi:10.1016/j.applthermaleng.2018.12.168.
  • Dadsetan, M., Chitsaz, I., Amani, E. 2019. A study of swirl ratio effects on the NOx formation and mixture stratification in an RCCI engine. Energy 182:1100–14. doi:10.1016/j.energy.2019.06.109.
  • Das, A., and H. C. Watson, “Development of a Natural Gas Spark Ignition Engine for Optimum Performance,” Proceedings of the I MECH E Part D Journal of Automobile Engineering, vol. 211, pp.361–78, 1997. doi:10.1243/0954407971526506
  • Deshmukh,A.Y., M.Bode, T.Falkenstein, M.Khosravi, D.van Bebber, M.Klaas, W.Schröder, H.Pitsch. 2019. Simulation and Modeling of Direct Gas Injection through Poppet-type Outwardly-opening Injectors in Internal Combustion Engines. Energy, Environment, and Sustainability 65–115. doi:10.1007/978-981-13-3307-1_4.
  • Dimopoulos, P., and K. Boulouchos Turbulent Flow Field Characteristics in a Motored Reciprocating Engine. SAE Technical Paper 972833, 1997. 10.4271/972833.
  • Duan, X.B., Liu, J.P., Tan, Y.H., Luo, B.J., Guo, G.M., Wu, Z.K., Liu, W.Q., Li, Y.Y. 2018a. Influence of single injection and two stagnation injection strategy on thermodynamic process and performance of a turbocharged direct-injection spark-ignition engine fuelled with ethanol and gasoline blend. Applied Energy 228:942–53. doi:10.1016/j.apenergy.2018.06.090.
  • Duan, X.B., Liu, J.P., Yao, J., Chen, Z., Wu, C., Chen, C.Y., Dong, H. 2018b. Performance, combustion and knock assessment of a high compression ratio and lean-burn heavy-duty spark-ignition engine fuelled with n-butane and liquefied methane gas blend. Energy 158:256–68. doi:10.1016/j.energy.2018.03.014.
  • Duan, X.B., Liu, J.P., Yuan, Z.P., Guo, G.M., Liu, Q., Tang, Q.J., Deng, B.L., Guan, J.H. 2018. Experimental investigation of the effects of injection strategies on cycle-to-cycle variations of a DISI engine fueled with ethanol and gasoline blend. Energy 165:455–70. doi:10.1016/j.energy.2018.09.170.
  • Goryntsev, D., A. Sadiki, M. Klein, and J. Janicka. 2009. Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air–fuel mixing in realistic DISI IC-engines. Proc. Combust Inst 32 (2):2759–66. doi:10.1016/j.proci.2008.06.18528.
  • Wang, G.X., Yu, W.B., Li, X.B., Su, Y.P., Yang, R., Wu, W.T. 2019. Experimental and numerical study on the influence of intake swirl on fuel spray and in-cylinder combustion characteristics on large bore diesel engine. Fuel 237:209–21. doi:10.1016/j.fuel.2018.09.156.
  • Guo, G.M., He, Z.X., Zhang, Z.Y., Duan, L., Guan, W., Duan, X.B., Jin, Y. 2018. Visual experimental investigations of string cavitation and residual bubbles in the diesel nozzle and effects on initial spray structures. Int. J. Engine Res 21 (3):437–47. doi:10.1177/1468087418791061.
  • Gupta, A. K., M. J. Lewis, and M. Daurer. 2001. Swirl effects on combustion characteristics of premixed flames. J Eng Gas Turbines Power 123 (3):619–26. doi:10.1115/1.1339987.
  • Han, Z., and R. D. Reitz. 1995. Turbulence modeling of internal combustion engines using RNG k-ɛ models. Combust. Sci. Technol 106 (4–6):267–95. doi:10.1080/00102209508907782.
  • Heywood, J. B. XXXX. Internal combustion engine fundamentals. New York, USA: McGraw-Hill; 1998.
  • Hu, E. J., Z. H. Huang, J. J. He, C. Jin, and J. J. Zheng. 2009. Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. International Journal of Hydrogen Energy 34 (11):4876–88. doi:10.1016/j.ijhydene.2009.03.058.
  • Ikegami, M., M. Shioji, and K. Nishimoto. Turbulence Intensity and Spatial Integral Scale during Compression and Expansion Strokes in a Four-Cycle Reciprocating Engine. SAE Technical Paper 870372, 1987. 10.4271/870372.
  • Jena, A., H. Singh, and A. K. Agarwal, “Effect of Swirl Ratio and Piston Geometry on the Late-Compression Mean Air-Flow in a Diesel Engine,” SAE Technical Paper 2021-01-0647, 2021, doi:10.4271/2021-01-0647.
  • Benajes, J., Martin, J., Garcia, A.,  Villalta, D.,  Warey, A. 2017. Swirl ratio and post injection strategies to improve late cycle diffusion combustion in a light-duty diesel engine. Applied Thermal Engineering 123:365–76. doi:10.1016/j.applthermaleng.2017.05.101.
  • Kato, K., K. Igarashi, M. Masuda, et al.: Development of engine for natural gas vehicle. SAE Technical Paper 1999-01-0574 1999. (XXXX)10.4271/1999-01-0574
  • Lee, K., C. Bae, and K. Kang. 2007. The effects of tumble and swirl flows on flame propagation in a four-valve SI engine. Appl. Therm. Eng 27 (11–12):2122–30. doi:10.1016/j.applthermaleng.2006.11.011.
  • Li, Y., Zhao, H., Peng, Z., and Ladommatos, N.,: “Analysis of tumble and swirl motions in a four-valve SI engine,” SAE Technical Paper 2001-01-3555 (2001). 10.4271/2001-01-3555
  • Malaquias, A.C.T., Netto, N.A.D., da Costa, R.B.R., Baeta, J.G.C.. 2020. Combined effects of internal exhaust gas recirculation and tumble motion generation in a flex-fuel direct injection engine. Energy Convers. Manage 217(113007). doi: 10.1016/j.enconman.2020.113007.
  • Manjunath, N., Rajashekhar, C.R., Khan, T.M.Y., Badruddin, I.A., Kamangar, S., Khandal, S.V. 2019. Augmented Turbulence for Progressive and Efficient Combustion inBiodiesel-Diesel Engine. Arabian Journal for Science and Engineering 44:7957–66. doi:10.1007/s13369-019-03971-y.
  • Miles, P. C. 2008. Turbulent flow structure in direct-injection, swirl-supported diesel engines. In Flow and combustion in reciprocating engines, ed. C. Arcoumanis and T. Kamimoto, 173–256. Berlin; Heidelberg: Springer.
  • Miles, P. C., D. Choi, M. Megerle, B. RempelEwert, R. D. Reitz, M. C. Lai, and V. Sick The influence of swirl ratio on turbulent flow structure in a motored HSDI diesel engine: A combined experimental and numerical study. SAE technical paper 2004-01-1678, 2004.
  • Mostafa, M. K.: The B5. 9G gas engine technology. SAE International 952649 1995. 10.4271/952649
  • Myoungsoo, K., K. Yirop, K. Joohan, and H. S. Han. 2019. Development of quasi-dimensional turbulence model for spark-ignition engine with physical analysis of tumble: Energy-based tumble model focusing on energy intake and turbulence production. Applied Energy 252:113455. doi:10.1016/j.apenergy.2019.113455.
  • Navarro, E., T. J. Leo, and R. Corral. 2013. CO2 emissions from a spark ignition engine operating on natural gas-hydrogen blends (HCNG). Applied Energy 101:112–20. doi:10.1016/j.apenergy.2012.02.046.
  • Olmeda, P., J. Martín, R. Novella, and R. Carreño. 2015. An adapted heat transfer model for engines with tumble motion. Applied Energy 158:190–202. doi:10.1016/j.apenergy.2015.08.051.
  • Orbaiz, P., M. Brear, P. Abbasi, and P. Dennis. 2013. A Comparative Study of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas. SAE Int. J. Engines 6 (1). doi: 10.4271/2013-01-0229.
  • Ozdor, N., M. Dulger, and E. Sher, “Cyclic Variability in Spark Ignition Engines A Literature Survey,” SAE Technical Paper 940987, 1994, 10.4271/940987.
  • Pope, S. B. 2001. Turbulent flows. Cambridge: Cambridge University Press.
  • Ren, F., Chu, H.Q., Xiang, L.K., Han, W.W., Gu, M.Y. 2019. Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas. Int. J Hydrogen Energy 92 (4):1178–90. doi:10.1016/j.joei.2018.05.011.
  • Richards, K., P. Senecal, and E. Pomraning: CONVERGE (version 2. 3.19)manual. Madison, WI: Convergent Science, Inc. 2016.
  • Rogers, T., P. Petersen, and P. Lappas, “Flow Characteristics of Compressed Natural Gas Delivery for Direct Injection Spark Ignition Engines,” SAE Technical Paper 2015-01-0002, 2015, doi:10.4271/2015-01-0002.
  • Srivastava, D. K., and A. K. Agarwal. 2018. Combustion characteristics of a variable compression ratio laser-plasma ignited compressed natural gas engine. Fuel 214:322–29. doi:10.1016/j.fuel.2017.10.012.
  • Sun, Y., K. Sun, Z. Lu, T. Wang, and M. Jia Selection of Swirl Ratio in Diesel Engines Based on Droplet Trajectory Analysis. SAE paper 2017-01-0813. 2017. 10.4271/2017-01-0813
  • Tsiogkas, V. D., A. Chraniotis, D. Kolokotronis, and A. Tourlidakis, “In-Cylinder Flow Measurements in a Transparent Spark Ignition Engine,” SAE Technical Paper 2019-24-0099, 2019, doi:10.4271/2019-24-0099.
  • Wang, G.X., Yu, W.B., Li, X.B., Su, Y.P., Yang, R., Wu, W.T. 2019. Study on dynamic characteristics of intake system and combustion of controllable intake swirl diesel engine. Energy 180:1008–18. doi:10.1016/j.energy.2019.05.162.
  • Wang, G.X., Yu, W.B., Li, X.B., Yang, R. 2020. Influence of fuel injection and intake port on combustion characteristics of controllable intake swirl diesel engine. Fuel 262:116548. doi:10.1016/j.fuel.2019.116548.
  • Wang, T., W. Li, M. Jia, D. Liu, W. Qin, and X. Zhang. 2015. Large-eddy simulation of in-cylinder flow in a DISI engine with charge motion control valve: Proper orthogonal decomposition analysis and cyclic variation. Appl. Therm. Eng 75:561–74. doi:10.1016/j.applthermaleng.2014.10.081.
  • Wang, Z.S., Du, G.Z., Wang, D., Xu, Y., Shao, M.Y. 2018. Combustion process decoupling of a diesel/natural gas dual-fuel engine at low loads. Fuel 232:550–61. doi:10.1016/j.fuel.2018.05.152.
  • Wang, Z. S., G. Z. Du, et al.. xxxx. Study on the combustion characteristics of a high compression ratio HCCI engine fueled with natural gas. Fuel 255:115701. doi:10.1016/j.fuel.2019.115701.
  • Wang, Z.S., Zhao, Z.X., Wang, D., Tan, M.Z., Han, Y.Q., Liu, Z.C., Dou, H.L. 2016. Impact of pilot diesel ignition mode on combustion and emissions characteristics of a diesel/natural gas dual fuel heavy-duty engine. Fuel 167:248–56. doi:10.1016/j.fuel.2015.11.077.
  • Yang, J., Dong, X., Wu, Q., Xu, M. 2019. Effects of enhanced tumble ratios on the in-cylinder performance of a gasoline direct injection optical engine. Applied Energy 236:137–46. doi:10.1016/j.apenergy.2018.11.059.
  • Zhang, S.H., Duan, X.B., Liu, Y.Q., Guo, G.M., Zeng, H.B., Liu, J.P., Lai, M.C., Talekar, A.Yuan, Z.P. 2019. Experimental and numerical study the effect of combustion chamber shapes on combustion and emissions characteristics in a heavy-duty lean burn SI natural gas engine coupled with detail combustion mechanism. Fuel 258(116130). doi: 10.1016/j.fuel.2019.116130.
  • Zhang, Z., H. Zhang, T. Wang, and M. Jia. 2014. Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads. Energy 65:18–24. doi:10.1016/j.energy.2013.11.062.
  • Zhou, F., Fu, J.Q., Ke, W.H., Liu, J.P., Yuan, Z.P., Luo, B.J. 2017. Effects of lean combustion coupling with intake tumble on economy and emission performance of gasoline engine. Energy 133:366–79. doi:10.1016/j.energy.2017.05.131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.