120
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Validation of thermal models to predict the productivity and heat transfer coefficients for passive solar still with different nanoparticles

, , &
Received 02 Jun 2021, Accepted 14 Aug 2021, Published online: 29 Aug 2021

References

  • Abdullah AS, Essa FA, Omara ZM, Rashid Y, Hadj-Taieb L, Abdelaziz GB, Kabeel AE. 2019. Rotating-drum solar still with enhanced evaporation and condensation techniques : Comprehensive study. Energy Convers. Manag 199 (September):112024. doi:10.1016/j.enconman.2019.112024.
  • Abolfazli, J., N. Rahbar, and M. Lavvaf. 2011. Utilization of thermoelectric cooling in a portable active solar still — An experimental study on winter days. Desalination 269 (1–3):198–205. doi:10.1016/j.desal.2010.10.062.
  • Adhikari, R. S., A. Kumar, and A. Kumar. 1990. Estimation of mass transfer rates in solar stills. Int. J. Energy Res 14 (7):737–44. doi:10.1002/er.4440140705.
  • Aggarwal, S., and G. N. Tiwari. 1998. Convective mass transfer in a double-condensing chamber and a conventional solar still. Desalination 91 (115):181–88. doi:10.1016/S0011-9164(98)00036-8.
  • Attia, M. E. H., A. M. Manokar, A. E. Kabeel, Z. Driss, R. Sathyamurthy, and W. Al-Kouz. 2021. Comparative study of a conventional solar still with different basin materials using exergy analysis. Desalin. Water Treat 224:55–64. doi:10.5004/dwt.2021.27173.
  • Baum, V. A., and R. Bairamov. 1963. Heat and Mass Transfer Processes in Solar Stills of Hotbox Type. Sol. Energy 8 (3):78–82. doi:10.1016/0038-092X(64)90081-7.
  • Carranza, F., C. D. Villa, J. Aguilar, H. A. Borbón-Nuñez, and D. Sauceda. 2021. Experimental study on the potential of combining TiO2, ZnO, and Al2O3 nanoparticles to improve the performance of a double-slope solar still equipped with saline water preheating Francisco. Desalin. Water Treat 216:14–33. doi:10.5004/dwt.2021.26760.
  • Ch., P. B., and Y. I. Cho. 1998. Experimental Heat Transfer : A Journal of, Thermal Energy Transport, Storage, and Conversion Hydrodynamic Generation and Heat Transfer Study of Dispersed Fluids with Sumicron Metalic Oxide. Therm. Energy 11 (2):151–70. doi:10.1080/08916159808946559.
  • Chen, Z., X. Ge, X. Sun, L. Bar, and Y. X. Miao. 1984. Natural convection heat transfer across air layers at various angles of inclination. Eng. Thermophys 26 (7):211–20.
  • Clark, J. A. 1990. The steady-state performance of a solar still. Sol. Energy 44 (1):43–49. doi:10.1016/0038-092X(90)90025-8.
  • Dev, R., and G. N. Tiwari. 2009. Characteristic equation of a passive solar still. Desalination 245 (1–3):246–65. doi:10.1016/j.desal.2008.07.011.
  • Dunkle, R. V. Solar water distillation : The roof type still and a multiple effect diffusion still.International Developments in Heat Transfer, ASME. Proceedings of International Heat Transfer 5, Part V,USA: University of Colorado. 1961.895–902. Online Availablehttps://nla.gov.au:443/tarkine/nla.obj-41433492
  • Dwivedi, V. K., and G. N. Tiwari. 2009. Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: An experimental validation. Desalination 246 (1–3):304–18. doi:10.1016/j.desal.2008.06.024.
  • Elango, C., N. Gunasekaran, and K. Sampathkumar. 2015. Thermal models of solar still - A comprehensive review. Renew. Sustain. Energy Rev 47:856–911. doi:10.1016/j.rser.2015.03.054.
  • Elango, T., A. Kannan, and K. K. Murugavel. 2015. Performance study on single basin single slope solar still with different water nano fluids. Desalination 360:45–51. doi:10.1016/j.desal.2015.01.004.
  • Gupta, B., P. Shankar, R. Sharma, and P. Baredar. 2016. Performance Enhancement using Nano Particles in Modified Passive Solar Still. Procedia Technol 25 (Raerest):1209–16. doi:10.1016/j.protcy.2016.08.208.
  • Ho, C. J., M. W. Chen, and Z. W. Li. 2008. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf 51 (17–18):4506–16. doi:10.1016/j.ijheatmasstransfer.2007.12.019.
  • Kabeel, A. E., Z. M. Omara, and F. A. Essa. 2017. Theoretical with experimental validation of modified solar still using nanofluids and external condenser. J. Taiwan Inst. Chem. Eng 75:77–86. doi:10.1016/j.jtice.2017.01.017.
  • Khanafer, K., and K. Vafai. 2011. A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf 54 (19–20):4410–28. doi:10.1016/j.ijheatmasstransfer.2011.04.048.
  • Kirkup, L., and B. Frenkel. 2007. An Introduction to uncertainty in measurement using the GUM (Guide to the expression of uncertainty in measurement). Accredit. Qual. Assur 12 (1):51–52. doi:10.1007/s00769-006-0221-x.
  • Kumar, S., and G. N. Tiwari. 1996. Estimation of convective mass transfer in solar distillation systems. Sol. Energy 57 (6):459–64. doi:10.1016/S0038-092X(96)00122-3.
  • Madhu, B., E. Bala Subramanian, P. K. Nagarajan, R. Sathyamurthy, and D. Mageshbabu. 2017. Improving the yield of freshwater and exergy analysis of conventional solar still with different nanofluids. FME Trans 45 (4):524–30. doi:10.5937/fmet1704524M.
  • Malik, M. A. S., G. N. Tiwari, A. Kumar, and M. S. Sodha. 1982a. Solar Distillation. 1st Edn. ed. U.K.: Pergamon Press, Oxford.
  • Malik, M. A. S., G. N. Tiwari, A. Kumar, and M. S. Sodha. 1982b. Solar Distillation, 59–71. Oxford UK: Pergamon press.
  • Navale, V. J. Experimental Study of Masonic Solar Still by Using Nanofluid.Int. Eng. Res. J 2395–1621.June.984–87.2016. Online Availablehttp://www.ierjournal.org/pupload/mit/HP9-10ok.pdf
  • Popiel, C. O., and J. Wojtkowiak. 1998. Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0°C to 150°C). Heat Transf. Eng 19 (3):87–101. doi:10.1080/01457639808939929.
  • Sahota, L., S. Arora, H. P. Singh, and G. Sahoo. 2020. Thermo-physical characteristics of passive double slope solar still loaded with MWCNTs and Al2O3-water based nanofluid. Mater. Today Proc 1–6. doi:10.1016/j.matpr.2020.01.600.
  • Sahota, L., and G. N. Tiwari. 2016. Effect of nanofluids on the performance of passive double slope solar still: A comparative study using characteristic curve. Desalination 388:9–21. doi:10.1016/j.desal.2016.02.039.
  • Sharshir, S. W., G. Peng, A. H. Elsheikh, and E. M. A. Edreis. 2018. Energy and exergy analysis of solar stills with micro/nano particles : A comparative study. Energy Convers. Manag 177 (September):363–75. doi:10.1016/j.enconman.2018.09.074.
  • Tiwari, A. K., and G. N. Tiwari. 2008. Effect of cover inclination and water depth on performance of a solar still for indian climatic conditions. J. Sol. Energy Eng. Trans. ASME 130 (2):0245021–24. doi:10.1115/1.2844450.
  • Tiwari, G. N. 2002. Solar energy: Fundamentals, design, modelling and applications. Alpha Science Int’l Ltd. Narso Publ. House, New Delhi, 525.
  • Tiwari, G. N., and S. A. Lawrence. 1991. New Heat and Mass Transfer Relations for a Solar Still. Energy Convers. Manag 31 (2):201–03. doi:10.1016/0196-8904(91)90073-R.
  • Tiwari, G. N., J. M. Thomas, and E. Khan. 1994. Optimisation of glass cover inclination for maximum yield in a solar still. Heat Recover. Syst. CHP 14 (4):447–55. doi:10.1016/0890-4332(94)90048-5.
  • Tripathi, R., and G. N. Tiwari. 2005. Effect of water depth on internal heat and mass transfer for active solar distillation. Desalination 173 (2):187–200. doi:10.1016/j.desal.2004.08.032.
  • Tsilingiris, P. T. 2007. The influence of binary mixture thermophysical properties in the analysis of heat and mass transfer processes in solar distillation systems. Sol. Energy 81 (12):1482–91. doi:10.1016/j.solener.2007.02.005.
  • Vajjha, R. S., and D. K. Das. 2009. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf 52 (21–22):4675–82. doi:10.1016/j.ijheatmasstransfer.2009.06.027.
  • Zheng, H., X. Zhang, J. Zhang, and Y. Wu. 2002. A group of improved heat and mass transfer correlations in solar stills. Energy Convers. Manag 43 (18):2469–78. doi:10.1016/S0196-8904(01)00185-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.