69
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The effects of pipe length on gas cloud explosion characteristics in the contraction pipe

ORCID Icon, ORCID Icon, , , , ORCID Icon, & show all
Received 07 Jun 2021, Accepted 17 Aug 2021, Published online: 30 Aug 2021

References

  • Bradley, D., M. Lawes, and M. E. Morsy. 2021. Combustion-induced turbulent flow fields in premixed flames[J]. Fuel 290:119972. doi:10.1016/j.fuel.2020.119972.
  • Cheeda, V. K. 2021. Experimental investigation of flame propagation caused by interfaces of the flame, turbulence eddies, and negative shock waves[J]. Combustion, Explosion, and Shock Waves 57 (3):285–98.
  • Chen, P., Y. Li, F. Huang, S. Guo, X. Liu. 2016. Experimental and LES investigation of premixed methane/air flame propagating in an chamber for three obstacle BR configurations[J]. Journal of Loss Prevention in the Process Industries 41:48–54. doi:10.1016/j.jlp.2016.02.020.
  • Chen, P., Y. Sun, Y. Li, G. Luo. 2017. Experimental and LES investigation of premixed methane/air flame propagating in an obstructed chamber with two slits[J]. Journal of Loss Prevention in the Process Industries 49:711–21. doi:10.1016/j.jlp.2016.11.005.
  • Cheng, X. F. 2007. Study on Fine Flame Structure Behavior and Flame Accelerating Mechanism of Premixed Propane-air[D]. Anhui: University of Science and Technology of China.
  • Faghih, M., X. Gou, and Z. Chen. 2016. The explosion characteristics of methane, hydrogen and their mixtures: A computational study[J]. Journal of Loss Prevention in the Process Industries 40:131–38. doi:10.1016/j.jlp.2015.12.015.
  • Gamezo, V. N., A. M. Khokhlov, and E. S. Oran. 2001. The influence of shock bifurcations on shock-flame interactions and DDT[J]. Combust Flame 126 (40):1810–26. doi:10.1016/S0010-2180(01)00291-7.
  • Harrion, A. J., and J. A. Eyre. 1987. External explosions as a result of explosion venting[J]. Combustion Science and Technology 152 (1–3):91–106. doi:10.1080/00102208708952570.
  • Ibrahim, S. S., and A. R. Masri. 2001. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries 14 (3):213–21. doi:10.1016/S0950-4230(00)00024-3.
  • Ivanov, M. F., A. D. Kiverin, and M. A. Liberman. 2011. Flame acceleration and DDT of hydrogen/oxygen gaseous mixtures in channels with no-slipwalls[J]. International Journal of Hydrogen Energy 36 (13):7714–27. doi:10.1016/j.ijhydene.2011.03.134.
  • Li, M., Y. Du, G. Li, S. Qi, S. Wang, S. Wei. 2017. Effects of gasoline-air concentration on explosion overpressure characteristics and flame behavior of semi-open pipeline[J]. Journal of Safety Science and Technology 13 (10):174–80.
  • Li, X., Q. Yu, N. Zhou, X. Liu, W. Huang, H. Zhao. 2019. The influence of pipe length on explosion of flammable premixed gas in 90 degree bending pipe and dynamic response of the thin-walled pipe[J]. Advances in Mechanical Engineering 11 (5):1–9.
  • Li, Y. 2015. The study of hydrogen-air and methane-air premixed flame propagation and pressure oscillation in the duct[D]. Henan: Henan Polytechnic University.
  • Lin B.Q., Li W.X., Zhu C.J., Lu H.L., Lu Z.G., & Li Q.Z. 2010. Experimental investigation on explosion characteristics of nano-aluminum powder-air mixtures[J]. Combustion Explosion & Shock Waves. 46(6):678. doi:10.1007/s10573-010-0089-2.
  • Liu, J. B., L. M. Yao, Y. Zhang, J. Chen. 2016. The calculation method of local pressure drop on variable cross-section circular tube structure[J]. Machinery Design & Manufacture 5:83–87.
  • Ma, Q. J., Q. Zhang, J. C. Chen, Y. Huang, Y. Shi. 2014. Effects of hydrogen on combustion characteristics of methane in air[J]. International Journal of Hydrogen Energy. 39(21):11291–98. doi:10.1016/j.ijhydene.2014.05.030.
  • Mahmoudi, Y., K. Mazaheri, and S. Parvar. 2013. Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations[J]. Acta Astronaut 91:263–82. doi:10.1016/j.actaastro.2013.06.009.
  • Masri, A. R., A. AlHarbi, S. Meares, and A. Comparative. 2017. Study of turbulent premixed flames propagating past repeated obstacles[J]. Industrial & Engineering Chemistry Research 56 (46):13973. doi:10.1021/acs.iecr.7b04335.
  • Morsy, M. E., and J. Yang. 2021. Numerical and experimental study on turbulence statistics in a large fan-stirred combustion vessel[J]. Experiments in Fluids 62 (5):116. doi:10.1007/s00348-021-03212-9.
  • Naik, D. L., and R. Kiran. 2018. Data mining and equi-accident zones for US pipeline accidents[J]. Journal of Pipeline Systems Engineering and Practice 9 (4):04018019. doi:10.1061/(ASCE)PS.1949-1204.0000340.
  • Nakahara, K., A. Yoshida, and M. Nishioka. 2021. Experiments and numerical simulation on the suppression of explosion of propane/air mixture by water mist[J]. Combustion and Flame 223:192–201. doi:10.1016/j.combustflame.2020.09.014.
  • Ronaldá Chapman, W., and R. V. I. Vernoná Wheeler. 1927. The propagation of flame in mixture of methane and air. Part V. The movement of the medium in which the flame travels[J]. Journal of the Chemical Society 12:38–46. doi:10.1039/JR9270000038.
  • Sarli, V. D., A. D. Benedetto, and G. Russo. 2012. Large eddy simulation of transient premixed flame-vortex interactions in gas explosions[J]. Chemical Engineering Science 71:539–51. doi:10.1016/j.ces.2011.11.034.
  • Sierra, D., L. Montecchi, and I. Mura. 2019. Stochastic modeling and analysis of vapor cloud explosions domino effects in chemical plants[J]. Journal of the Brazilian Computer Society 25 (11):1–19. doi:10.1186/s13173-019-0092-8.
  • Sun, C. H., Y. D. Qu, S. Wang, Y. Cao. 2018. Influence of variable cross-section pipe structure on deflagration characteristics of H2/Air premixed gas[J]. Explosive Materials 47 (3):19–26.
  • Sun, L. T., B. Y. Jiang, and F. J. Gu. 2015. Effects of changes in pipe cross-section on the explosion-proof distance and the propagation characteristics of gas explosions[J]. Journal of Natural Gas Science and Engineering 25:236–41. doi:10.1016/j.jngse.2015.05.007.
  • Tang, C., Z. Huang, C. Jin, J. He, J. Wang, X. Wang, H. MIAO. 2009. Explosion characteristics of hydrogen–nitrogen–air mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy. 34(1):554–61. doi:10.1016/j.ijhydene.2008.10.028.
  • Teodorczyk, A., P. Drobniak, and A. Dabkowski. 2009. Fast turbulent deflagration and DDT of hydrogene air mixtures small obstructed channel[J]. International Journal of Hydrogen Energy 34 (14):5887–93. doi:10.1016/j.ijhydene.2008.11.120.
  • Wesevich, J., P. Hassig, L. Nikodym, V. Nasri, J. Mould. 2017. Accounting for channeling and shielding effects for vapor cloud explosions[J]. Journal of Loss Prevention in the Process Industries 50:205–20. doi:10.1016/j.jlp.2017.09.015.
  • Xiao, H. H. 2013. Experimental and numerical study of dynamics of premixed hydrogen-air flame propagating in ducts[D]. Anhui: University of Science and Technology of China.
  • Xiaobo, S., X. Guangli, W. Sizhe. 2017. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics 120:741–47. doi:10.1016/j.applthermaleng.2017.04.040.
  • Yang, L., X. L. Yang, H. W. Li. 2008. Detonation wave propagation in an incombustible abrupt expansion pipe[J]. Journal of Shenzhen University (Science and Technology Edition) 25 (2):129–33.
  • Yao, Z., H. Deng, W. Zhao, X. Wen, J. Dong, F. Wang, G. Chen, Z. Guo. 2020. Experimental study on explosion characteristics of premixed syngas/air mixture with different ignition positions and opening ratios[J]. Fuel. 279(10):118426. doi:10.1016/j.fuel.2020.118426.
  • Yin, H. R., and C. S. Weng. 2016. Propagation characteristics of detonation wave in variable cross-section sudden expansion pipe[J]. Aero Weaponry (6):66–72.
  • Zamashchikov, V. V. 2020. Mechanism of flame propagation above the surface of a flammable liquid[J]. Combustion, Explosion, and Shock Waves 56 (6):629–33. doi:10.1134/S0010508220060027.
  • Zhang, P. L., J. Wang, J. J. Liang, and D. Wang. 2019. Explosions of gasoline vapor/air mixture in closed vessels with different shapes and sizes[J]. Journal of Loss Prevention in the Process Industries 57:327–34. doi:10.1016/j.jlp.2018.12.010.
  • Zhang, Q., L. Pang, and H. M. Liang. 2011. Comparison of explosion characteristics between hydrogen/air and methane/air at the stoichiometric concentrations[J]. Journal of Loss Prevention in the Process Industries 24 (1):43–48. doi:10.1016/j.jlp.2010.08.011.
  • Zheng, K., M. G. Yu, L. Zheng, X. Wen, T. Chu, L. Wang. 2017. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts[J]. International Journal of Hydrogen Energy. 42(8):5426–38. doi:10.1016/j.ijhydene.2016.10.106.
  • Zheng, L. L., and H. S. Dou Research progress of detonation wave propagation characteristics in diffusion channel[C]. Proceedings of the 16th National Shock Wave and Ji Museum Academic Conference, Luoyang, 2014,111–16.
  • Zheng, Y. S., and C. Wang. 2009. Numerical simulation for the influence of variable cross-section tube on explosion characteristics of methane[J]. Transactions of Beijing Institute of Technology 29 (11):947–49.
  • Zhou, N., P. F. Ni, X. Li, X.W. Li, X.-J. Yuan, H.J. Zhao. 2021. Experimental study and numerical simulation of the influence of vent conditions on hydrogen explosion characteristics[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2021.1898494.
  • Zhou, N., W. X. Wang, and G. W. Zhang. 2018. Effect of obstacles on flame acceleration of propane-air explosion[J]. Explosion and Shock Waves 38 (5):1106–14.
  • Zhou, N., Y. D. Zong, W. Wang, Q. Yu, H. Zhao, W. Huang, X. Liu. 2019. Numerical simulation study on flame propagation characteristics of combustible gas in obstacle Space[J]. Industrial Safety and Environmental Protection 45 (12):23–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.