145
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of sulfonated mesoporous carbon from Calophyllum inophyllum oil cake as heterogeneous transesterification catalyst for biodiesel production: a process optimization study

Received 12 Nov 2020, Accepted 14 Aug 2021, Published online: 31 Aug 2021

References

  • Aga, W. S., S. K. Fantaye, and S. A. Jabasingh. 2020. Biodiesel production from Ethiopian ‘Besana’- Croton Macrostachyus seed: Characterization and optimization. Renewable Energy 157:574–84. doi:10.1016/j.renene.2020.05.068.
  • Arumugam, A., G. Karuppasamy, and G. B. Jegadeesan. 2018. Synthesis of mesoporous materials from bamboo leaf ash and catalytic properties of immobilized lipase for hydrolysis of rubber seed oil. Materials Letters 225:113–16. doi:10.1016/j.matlet.2018.04.122.
  • Awasthi, G. P., D. P. Bhattarai, B. Maharjan, K. S. Kim, C. H. Park, and C. S. Kim. 2019. Synthesis and characterizations of activated carbon from wisteria sinensis seeds biomass for energy storage applications. Journal of Industrial and Engineering Chemistry 72:265–72. doi:10.1016/j.jiec.2018.12.027.
  • Barbosa, T. R., E. L. Foletto, G. L. Dotto, and S. L. Jahn. 2018. Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions. Ceramics International 44 (1):416–23. doi:10.1016/j.ceramint.2017.09.193.
  • Bastos, R. R. C., A. P. da Luz Corrêa, P. T. S. da Luz, G. N. da Rocha Filho, J. R. Zamian, and L. R. V. da Conceição. 2020. Optimization of biodiesel production using sulfonated carbon-based catalyst from an Amazon Agro-Industrial waste. Energy Conversion and Management 205:112457. doi:10.1016/j.enconman.2019.112457.
  • Chang, B., J. Fu, Y. Tian, and X. Dong. 2013. Soft-Template synthesis of sulfonated mesoporous carbon with high catalytic activity for biodiesel production. RSC Advances 3 (6):1987–94. doi:10.1039/c2ra21982d.
  • Cheng, Y., B. Li, Y. Huang, Y. Wang, J. Chen, D. Wei, Y. Feng, D. Jia, and Y. Zhou. 2018. Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors. Applied Surface Science 439:712–23. doi:10.1016/j.apsusc.2018.01.006.
  • Chhabra, M., G. Dwivedi, P. Baredar, A. Kumar, and A. Garg. 2020. Materials today : Proceedings production & optimization of biodiesel from rubber oil using BBD technique. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.05.791.
  • Choi, S. W., J. Tang, V. G. Pol, and K. B. Lee. 2019. Pollen-Derived porous carbon by KOH activation: Effect of physicochemical structure on CO 2 adsorption. Journal of CO2 UtilUtilization 29:146–55. doi:10.1016/j.jcou.2018.12.005.
  • Churipard, S. R., P. Manjunathan, P. Chandra, G. V. Shanbhag, R. Ravishankar, P. V. C. Rao, G. Sri Ganesh, A. B. Halgeri, and S. P. Maradur. 2017. Remarkable catalytic activity of a sulfonated mesoporous polymer (MP-SO3H) for the synthesis of solketal at room temperature. New Journal of Chemistry 41 (13):5745–51. doi:10.1039/c7nj00211d.
  • Enock, T. K., C. K. King’ondu, A. Pogrebnoi, and Y. A. C. Jande. 2017. Biogas-Slurry derived mesoporous carbon for supercapacitor applications. Materials Today Energy 5:126–37. doi:10.1016/j.mtener.2017.06.006.
  • Fattah, I. M. R., H. C. Ong, T. M. I. Mahlia, M. Mofijur, and A. S. Silitonga. 2020. State of the Art of catalysts for biodiesel production.Frontiers in Energy Research8:1–17. doi:10.3389/fenrg.2020.00101
  • Fu, M., W. Chen, J. Ding, X. Zhu, and Q. Liu. 2019. Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors. Journal of Alloys Compdand Compounds 782:952–60. doi:10.1016/j.jallcom.2018.12.244.
  • Fu, Y., N. Zhang, Y. Shen, X. Ge, and M. Chen. 2018. Micro-Mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis. Bioresource Technology 269 (August):67–73. doi:10.1016/j.biortech.2018.08.083.
  • García, I. L. 2016. Feedstocks and challenges to biofuel development. In Editor(s): Rafael Luque, Carol Sze Ki Lin, Karen Wilson, James Clark, Handbook of Biofuels Production, 85–118. Woodhead Publishing. doi:10.1016/B978-0-08-100455-5.00005-9.
  • Gupta, V. K., and T. A. Saleh. 2013. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environmental Science and Pollution Research 20:2828–43. doi:10.1007/s11356-013-1524-1.
  • Hajamini, Z., M. A. Sobati, S. Shahhosseini, and B. Ghobadian. 2016. Waste Fish Oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation. Applied Thermal Engineering 94:1–10. doi:10.1016/j.applthermaleng.2015.10.101.
  • Hariram, V., A. Bose, and S. Seralathan. 2019. Dataset on optimized biodiesel production from seeds of vitis vinifera using ANN, RSM and ANFIS. Data in Brief 25. doi:10.1016/j.dib.2019.104298.
  • Jamil, U., A. Husain Khoja, R. Liaquat, S. Raza Naqvi, W. Nor Nadyaini Wan Omar, and N. Aishah Saidina Amin. 2020. Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Conversion and Management 215:112934. doi:10.1016/j.enconman.2020.112934.
  • Konwar, L. J., P. Mäki-Arvela, A. J. Thakur, N. Kumar, and J. P. Mikkola. 2016. Sulfonated carbon as a new, reusable heterogeneous catalyst for one-pot synthesis of acetone soluble cellulose acetate. RSC Advances 6 (11):8829–37. doi:10.1039/c5ra25716f.
  • Kumar, S., S. Jain, and H. Kumar. 2020. Experimental study on biodiesel production parameter optimization of Jatropha − Algae oil mixtures and performance and emission analysis of a diesel engine coupled with a generator fueled with diesel/biodiesel blends. ACS Omega, 5, 28, 17033–17041. doi:10.1021/acsomega.9b04372.
  • Li, X., H. Li, T. Liu, Y. Hei, M. Hassan, S. Zhang, J. Lin, T. Wang, X. Bo, H. L. Wang, et al. 2018. The biomass of ground cherry husks derived carbon nanoplates for electrochemical sensing. Sensors And Actuators B: Chemical 255:3248–56. doi:10.1016/j.snb.2017.09.151.
  • Liang, C., J. Bao, C. Li, H. Huang, C. Chen, Y. Lou, H. Lu, H. Lin, Z. Shi, and S. Feng. 2017. One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials. Microporous and Mesoporous Materials 251:77–82. doi:10.1016/j.micromeso.2017.05.044.
  • Manyala, N., A. Bello, F. Barzegar, A. A. Khaleed, D. Y. Momodu, and J. K. Dangbegnon. 2016. Coniferous pine biomass: A novel insight into sustainable carbon materials for supercapacitors electrode. Materials Chemistry and Physics 182:139–47. doi:10.1016/j.matchemphys.2016.07.015.
  • Mestre, A. S., F. Hesse, C. Freire, C. O. Ania, and A. P. Carvalho. 2019. Chemically activated high grade nanoporous carbons from low density renewable biomass (Agave Sisalana) for the removal of pharmaceuticals. Journal of Colloid and Interface Science 536:681–93. doi:10.1016/j.jcis.2018.10.081.
  • Mujtaba, M. A., H. H. Masjuki, M. A. Kalam, H. C. Ong, M. Gul, M. Farooq, M. E. M. Soudagar, W. Ahmed, M. H. Harith, and M. N. A. M. Yusoff. 2020. Ultrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine - Cuckoo search. Renewable Energy 158:202–14. doi:10.1016/j.renene.2020.05.158.
  • Na, S., Z. Minhua, D. Xiuqin, and W. Lingtao. 2019. Preparation of sulfonated ordered mesoporous carbon catalyst and its catalytic performance for esterification of free fatty acids in waste cooking oils. RSC Advances 9 (28):15941–48. doi:10.1039/c9ra02546d.
  • Nahavandi, M., T. Kasanneni, Z. S. Yuan, C. C. Xu, and S. Rohani. 2019. Efficient conversion of glucose into 5-hydroxymethylfurfural using a sulfonated carbon-based solid acid catalyst: an experimental and numerical study. ACS Sustainable Chemistry & Engineering 7 (14):11970–84. doi:10.1021/acssuschemeng.9b00250.
  • Ngaosuwan, K., J. G. Goodwin, and P. Prasertdham. 2016. A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy 86:262–69. doi:10.1016/j.renene.2015.08.010.
  • Ong, Hwai Chyuan & Rahman, Md. Mofijur & Gumilang, D. & Kusumo, Fitranto & Mahlia, T M Indra. 2020. Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils. Energies. 13. 1319. 10.3390/en13061319
  • Peng, H. L., J. B. Zhang, J. Y. Zhang, F. Y. Zhong, P. K. Wu, K. Huang, J. P. Fan, and F. Liu. 2019. Chitosan-derived mesoporous carbon with ultrahigh Vp for amine impregnation and highly efficient CO2 capture. Chemical Engineering Journal 359:1159–65. doi:10.1016/j.cej.2018.11.064.
  • Qiu, L., N. Zhu, Y. Feng, E. E. Michaelides, G. Żyła, D. Jing, X. Zhang, P. M. Norris, C. N. Markides, and O. Mahian. 2020. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports 843:1–81. doi:10.1016/j.physrep.2019.12.001.
  • Qu, T., S. Niu, Z. Gong, K. Han, Y. Wang, and C. Lu. 2020. Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: Optimized by response surface methodology. Renewable Energy 159:873–84. doi:10.1016/j.renene.2020.06.009.
  • Rajendiran, N., and B. Gurunathan. 2020. Optimization and techno-economic analysis of biodiesel production from calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresource Technology 123852. doi:10.1016/j.biortech.2020.123852.
  • Ramdani, W. G., A. Karam, K. De Oliveira Vigier, S. Rio, A. Ponchel, and F. Jérôme. 2019. Catalytic glycosylation of glucose with alkyl alcohols over sulfonated mesoporous carbons. Molecular Catalysis 468:125–29. doi:10.1016/j.mcat.2019.02.016.
  • RicharddLSmith, Z., and J. Xiao-FeiiTian. eds. Biofuels and Biorefi Neries 9 production of materials from sustainable biomass resources. 10.1007/978-981-13-3768-0
  • Rocha, I., Y. Hattori, M. Diniz, A. Mihranyan, M. Strømme, and J. Lindh. 2018. Spectroscopic and physicochemical characterization of sulfonated cladophora cellulose beads. Langmuir 34 (37):11121–25. doi:10.1021/acs.langmuir.8b01704.
  • Sharghi, H., P. Shiri, and M. Aberi. 2018 November 1. An overview on recent advances in the synthesis of sulfonated organic materials, sulfonated silica materials, and sulfonated carbon materials and their catalytic applications in chemical processes. Beilstein Journal of Organic Chemistry 14:2745–70. doi: 10.3762/bjoc.14.253.
  • Silitonga, A. S., T. Meurah, I. Mahlia, A. H. Shamsuddin, J. Milano, F. Kusumo, A. Sebayang, S. Dharma, H. Ibrahim, and H. Husin. 2019. Optimization of cerbera manghas biodiesel production using artificial neural networks integrated with ant colony optimization. Energies 12:3811. doi:10.3390/en12203811.
  • Singh, R., F. Bux, and Y. C. Sharma. 2020. Optimization of biodiesel synthesis from microalgal (Spirulina Platensis) oil by using a novel heterogeneous catalyst, β-strontium silicate (β-Sr2SiO4). Fuel 280:118312. doi:10.1016/j.fuel.2020.118312.
  • Singh, Y., A. Sharma, S. Tiwari, and A. Singla. 2019. Optimization of diesel engine performance and emission parameters employing Cassia Tora methyl esters-Response surface methodology approach. Energy 168:909–18. doi:10.1016/j.energy.2018.12.013.
  • Song, M., Y. Zhou, X. Ren, J. Wan, Y. Du, G. Wu, and M. F. Biowaste-Based Porous. 2019. Carbon for supercapacitor: The influence of preparation processes on structure and performance. Journal of Colloid and Interface Science 535:276–86. doi:10.1016/j.jcis.2018.09.055.
  • Sun, F., L. Wang, Y. Peng, J. Gao, X. Pi, Z. Qu, G. Zhao, and Y. Qin. 2018. Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials. Applied Surface Science 436:486–94. doi:10.1016/j.apsusc.2017.12.067.
  • Suo, F., X. Liu, C. Li, M. Yuan, B. Zhang, J. Wang, Y. Ma, Z. Lai, and M. Ji. 2019. Mesoporous activated carbon from starch for superior rapid pesticides removal. International Journal of Biological Macromolecules 121:806–13. doi:10.1016/j.ijbiomac.2018.10.132.
  • Suresh, K. S., P. V. Suresh, and T. G. Kudre. 2019. 4 - Prospective ecofuel feedstocks for sustainable production. Editor(s): Kalam Azad, In Woodhead Publishing Series in Energy, Advances in Eco-Fuels for a Sustainable Environment, Woodhead Publishing, 89-117. Elsevier Ltd. doi:10.1016/B978-0-08-102728-8.00004-8.
  • Tacias-Pascacio, V. G., B. Torrestiana-Sánchez, L. Dal Magro, J. J. Virgen-Ortíz, F. J. Suárez-Ruíz, R. C. Rodrigues, and R. Fernandez-Lafuente. 2019. Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renewable Energy 135:1–9. doi:10.1016/j.renene.2018.11.107.
  • Tian, Z. F., M. J. Xie, Y. Shen, Y. Z. Wang, and X. F. Guo. 2017. Fabrication of Sulfonated mesoporous carbon by evaporation induced self-assembly/carbonization approach and its supercapacitive properties. Chinese Chemical Letters 28 (4):863–67. doi:10.1016/j.cclet.2016.12.004.
  • Wei, H., G. Chen, L. Cao, Q. Zhang, Q. Yan, and X. Fang. 2013. Enhanced hydrolytic stability of sulfonated polyimide ionomers using Bis(Naphthalic Anhydrides) with Low electron affinity. Journal of Materials Chemistry A 1 (35):10412–21. doi:10.1039/c3ta11977g.
  • Wu, X. X., C. Y. Zhang, Z. W. Tian, and J. J. Cai. 2018. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture. Xinxing Tan Cailiao/New Carbon Mater 33 (3):252–61. doi:10.1016/S1872-5805(18)60338-5.
  • Xie, W., and F. Wan. 2019. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO- 66-2COOH metal-organic frameworks for biodiesel production via One-Pot Transesteri Fi Cation-Esteri Fi Cation of acidic vegetable oils. Chemical Engineering Journal 365:40–50. doi:10.1016/j.cej.2019.02.016.
  • Xie, W., and H. Wang. 2020. Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe 3 O 4/SiO 2 composites: A magnetically recyclable catalyst for simultaneous Transesteri Fi Cation and Esteri Fi Cations of low-cost oils to biodiesel. Renewable Energy 145:1709–19. doi:10.1016/j.renene.2019.07.092.
  • Xie, W., and H. Wang. 2021. Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable brönsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils. Fuel 283:118893. doi:10.1016/j.fuel.2020.118893.
  • Xue, M., W. Lu, C. Chen, Y. Tan, B. Li, and C. Zhang. 2019. Optimized synthesis of banana peel derived porous carbon and its application in Lithium Sulfur batteries. Materials Research Bulletin 112:269–80. doi:10.1016/j.materresbull.2018.12.035.
  • Yahya, S., S. K. Muhamad Wahab, and F. W. Harun. 2020. Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology. Renewable Energy 157:164–72. doi:10.1016/j.renene.2020.04.149.
  • Yang, G., Z. Wang, Q. Xian, F. Shen, C. Sun, Y. Zhang, and J. Wu. 2015. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Advances 5 (50):40117–25. doi:10.1039/c5ra02836a.
  • Yaumi, A. L., M. Z. A. Bakar, and B. H. Hameed. 2018. Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed. Energy 155:46–55. doi:10.1016/j.energy.2018.04.183.
  • Zheng, F., D. Liu, G. Xia, Y. Yang, T. Liu, M. Wu, and Q. Chen. 2017. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for Lithium-ion batteries. Journal of Alloys and Compounds 693:1197–204. doi:10.1016/j.jallcom.2016.10.118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.