581
Views
8
CrossRef citations to date
0
Altmetric
Research Article

An improved moth swarm algorithm based fractional order type-2 fuzzy PID controller for frequency regulation of microgrid system

, ORCID Icon, ORCID Icon &
Received 13 Jul 2021, Accepted 01 Feb 2022, Published online: 25 Feb 2022

References

  • Abd-Elazim, S., and E. Ali. 2016. Load frequency controller design via BAT algorithm for nonlinear interconnected power system. International Journal of Electrical Power & Energy Systems 77:166–77. doi:https://doi.org/10.1016/j.ijepes.2015.11.029.
  • Abuelenin, S. M., and R. F. Abdel-Kader. 2017. Closed-form mathematical representations of interval type-2 fuzzy logic systems. Systems and Control 1–15.
  • Ali, E., and S. Abd-Elazim. 2013. BFOA based design of PID controller for two area Load Frequency Control with nonlinearities. International Journal of Electrical Power & Energy Systems 51:224–31. doi:https://doi.org/10.1016/j.ijepes.2013.02.030.
  • Arya, Y. 2020. Effect of electric vehicles on load frequency control in interconnected thermal and hydrothermal power systems utilising CF-FOIDF controller. IET Generation, Transmission & Distribution 14 (14):2666–75. doi:https://doi.org/10.1049/iet-gtd.2019.1217.
  • Chettibi, N., A. Mellit, G. Sulligoi, and A. Massi Pavan. 2018. adaptive neural network-based control of a hybrid AC/DC microgrid. IEEE Transactions on Smart Grid 9 (3):1667–79.
  • Das, D. C., A. K. Roy, and N. Sinha. 2012. GA based frequency controller for solar thermal-diesel-wind hybrid energy generation/energy storage system. International Journal of Electrical Power & Energy Systems 43 (1):262–79. doi:https://doi.org/10.1016/j.ijepes.2012.05.025.
  • Dash, P., L. C. Saikia, and N. Sinha. 2014. Comparison of performances of several Cuckoo search algorithm based 2DOF controllers in AGC of multi-area thermal system. International Journal of Electrical Power & Energy Systems 55:429–36. doi:https://doi.org/10.1016/j.ijepes.2013.09.034.
  • Ding, Y., L. Cheng, Y. Zhang, and Y. Xue. 2014. Operational reliability evaluation of restructured power systems with wind power penetration utilizing reliability network equivalent and time-sequential simulation approaches. Journal of Modern Power Systems and Clean Energy 2 (4):329–40. doi:https://doi.org/10.1007/s40565-014-0077-8.
  • Duman, S. 2018. A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems. s.l: IEEE Access.
  • Enrico, S., and D. Kai. 2016. Fractional calculus: Models and numerical. s.l: World Scientific.
  • Gandomi, A., X. Yang, and A. Alavi. 2013. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers 29 (1):17–35. doi:https://doi.org/10.1007/s00366-011-0241-y.
  • Gheisarnejad, M., and M. Khooban. 2019. Secondary load frequency control for multi-microgrids: HiL real-time simulation. Soft Computing 23 (14):5785–98. doi:https://doi.org/10.1007/s00500-018-3243-5.
  • Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. s.l: s.n.
  • Kanase-Patil, A. B., A. P. Kaldate, S. D. Lokhande, H. Panchal, M. Suresh, V. Priya, et al. 2020. A review of artificial intelligence-based optimization techniques for the sizing of integrated renewable energy systems in smart cities. Environmental Technology Reviews. 9(1):111–36. doi:https://doi.org/10.1080/21622515.2020.1836035.
  • Kennedy, J., and R. Eberhart, 1995. Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks Perth, WA, Australia, Volume 4, pp. 1942–48.
  • Khadanga, R. K., S. Padhy, S. Panda, and A. Kumar. 2018. Design and analysis of tilt integral derivative controller for frequency control in an islanded microgrid: a novel hybrid dragonfly and pattern search algorithm approach. Arabian Journal for Science and Engineering 43 (6):3103–14. doi:https://doi.org/10.1007/s13369-018-3151-0.
  • Khooban, M. 2018. Secondary load frequency control of time-delay stand-alone microgrids with electric vehicles. IEEE Transactions on Industrial Electronics 65 (9):7416–22. doi:https://doi.org/10.1109/TIE.2017.2784385.
  • Khooban, M., M. Gheisarnejad, N. Vafamand, M. Jafari, S. Mobayen, T. Dragicevic, J. Boudjadar, et al. 2019. Robust frequency regulation in mobile microgrids: HIL Implementation. IEEE Systems Journal. 13(4):4281–91. doi:https://doi.org/10.1109/JSYST.2019.2911210.
  • Khooban, M., T. Niknam, M. Shasadeghi, T. Dragicevic, F. Blaabjerg, et al. 2018. Load frequency control in microgrids based on a stochastic noninteger controller. IEEE Transactions on Sustainable Energy. 9(2):853–61. doi:https://doi.org/10.1109/TSTE.2017.2763607.
  • Mirjalili, S., and A. Lewis. 2016. The whale optimization algorithm. Advances in Engineering Software 95:51–67. doi:https://doi.org/10.1016/j.advengsoft.2016.01.008.
  • Mishra, D., P. C. Nayak, S. K. Bhoi, and R. C. Prusty, 2021b. Design and analysis of multi-stage TDF/(1+TI) controller for Load-frequency control of A.C multi-islanded microgrid system using modified sine cosine algorithm. Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON) Bhubaneswar, India, Volume 1, pp. 1–6.
  • Mishra, S., P. C. Nayak, U. C. Prusty, and R. C. Prusty, 2021a. Model predictive controller based load frequency control of isolated microgrid system integrated to plugged-in electric vehicle. Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON) Bhubaneswar, India, Volume 1, pp. 1–5.
  • Mishra, S., R. C. Prusty, and S. Panda. 2020. Design and analysis of 2dof-PID controller for frequency regulation of multi-microgrid using hybrid dragonfly and pattern search algorithm. Journal of Control, Automation and Electrical Systems 31 (3):813–27. doi:https://doi.org/10.1007/s40313-019-00562-y.
  • Mohamed, -A.-A.-A., Y. S. Mohamed, A. A. El-Gaafary, and A. M. Hemeida. 2017. Optimal power flow using moth swarm algorithm. Electric Power Systems Research 142:190–206. doi:https://doi.org/10.1016/j.epsr.2016.09.025.
  • Nayak, P. C., S. Mishra, R. C. Prusty, and S. Panda. 2020. Performance analysis of hydrogen aqua equalizer fuel-cell on AGC of Wind-hydro-thermal power systems with sunflower algorithm optimized fuzzy-PDFPI controller. International Journal of Ambient Energy 43:1–14.
  • Nayak, P. C., R. C. Prusty, and S. Panda. 2020. Grasshopper Optimization Algorithm of multistage PDF+(1+ PI) Controller for AGC with GDB & GRC nonlinearity of dispersed type power system. International Journal of Ambient Energy 43:1–13.
  • Nayak, P. C., U. C. Prusty, R. C. Prusty, and S. Panda. 2021. Imperialist competitive algorithm optimized cascade controller for load frequency control of multi-microgrid system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Part A: Recovery, Utilization, and Environmental Effects, 1–23. doi:https://doi.org/10.1080/15567036.2021.1897710.
  • Pan, I., and S. Das. 2015. kriging based surrogate modeling for fractional order control of microgrids. IEEE Transactions on Smart Grid 6 (1):36–44. doi:https://doi.org/10.1109/TSG.2014.2336771.
  • Podlubny, I., L. Dorcak, and I. Kostial San Diego, Ca , 1999. On fractional derivatives, fractional-order dynamic systems and PI/sup/spl lambda//D/sup/spl mu//-controllers. s.l.:Proceedings of the 36th IEEE CDC.
  • Sahu, P. C., S. Mishra, R. C. Prusty, and S. Panda. 2018. Improved-salp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid. Sustainable Energy, Grids and Networks 16:380–92. doi:https://doi.org/10.1016/j.segan.2018.10.003.
  • Sahu, B. K., S. Pati, and S. Panda. 2014. Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Generation, Transmission & Distribution 8 (11):1789–800. doi:https://doi.org/10.1049/iet-gtd.2014.0097.
  • Saikia-a, L. C., J. Nanda, and S. Mishra. 2011. Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system. International Journal of Electrical Power & Energy Systems 33 (3):394–401. doi:https://doi.org/10.1016/j.ijepes.2010.08.036.
  • Singh, K., M. Amir, F. Ahmad, and S. S. Refaat. 2021. Enhancement of frequency control for stand-alone multi-microgrids. IEEE Access 9:79128–42. doi:https://doi.org/10.1109/ACCESS.2021.3083960.
  • Soundarrajan, A., S. Sumathi, and C. Sundar. 2010. Particle swarm optimization based lfc and avr of autonomous power generating system. IAENG International Journal of Computer Science 37 (1):1–8.
  • Sun, J., D.-H. Zhang, X. Li, J. Zhang, D.-S. Du, et al. 2010. smith prediction monitor agc system based on fuzzy self-tuning PID control. Journal of Iron and Steel Research, International. 17(2):22–26. doi:https://doi.org/10.1016/S1006-706X(10)60053-2.
  • Suresh, M., et al. 2019. An enhanced multiobjective particle swarm optimisation algorithm for optimum utilisation of hybrid renewable energy systems. International Journal of Ambient Energy 43:1–10.
  • Vafamand, N., M. H. Khooban, T. B. F. Dragičević, and F. Blaabjerg. 2019. Networked fuzzy predictive control of power buffers for dynamic stabilization of DC microgrids. IEEE Transactions on Industrial Electronics 66 (2):1356–62. doi:https://doi.org/10.1109/TIE.2018.2826485.
  • Wang, C., Y. Mi, Y. Fu, and P. Wang. 2018. Frequency control of an isolated micro-grid using double sliding mode controllers and disturbance observer. IEEE Transactions on Smart Grid 9 (2):923–30. doi:https://doi.org/10.1109/TSG.2016.2571439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.