126
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of CaCl2, Al(OH)3 and NH4H2PO4 and their dosages on the explosion intensity of pulverized coal

ORCID Icon, ORCID Icon, , &
Pages 5718-5728 | Received 29 Nov 2021, Accepted 03 Jun 2022, Published online: 13 Jul 2022

References

  • Bagaria, P., S. Prasad, J. Sun, R. Bellair, and C. Mashuga. 2019. Effect of particle morphology on dust minimum ignition energy. Powder Technology 355:1–6. doi:10.1016/j.powtec.2019.07.020.
  • Boilard, S., P. Amyotte, F. Khan, A. Dastidar, and R. K. Eckhoff. 2013. Explosibility of micron- and nano-size titanium powders. Journal of Loss Prevention in the Process Industries 26 (6):1646–54. doi:10.1016/j.jlp.2013.06.003.
  • Chen, X., X. Hou, Q. Zhao, and Q. Li. 2022. Suppression of methane/coal dust deflagration by Al(OH)3 based on flame propagation characteristics and thermal decomposition. Fuel 311:122530. doi:10.1016/j.fuel.2021.122530.
  • Dufaud, O., L. Perrin, D. Bideau, and A. Laurent. 2012. When solids meet solids: A glimpse into dust mixture explosions. Journal of Loss Prevention in the Process Industries 25 (5):853–61. doi:10.1016/j.jlp.2012.04.011.
  • Jurca, A., C. Lupu, M. Paraian, and N. Vatavu. 2014. Analysis of explosivity parameters and environmental safety for combustible dusts. Environmental Engineering & Management Journal 13 (6):1433–38. doi:10.30638/eemj.2014.157.
  • Li, Q., B. Lin, H. Dai, and S. Zhao. 2012. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures. Powder Technology 229 (6):222–28. doi:10.1016/j.powtec.2012.06.036.
  • Liu, Z., Z. Gang, S. Song, and Q. Meng. 2020. Synthesis and characteristic analysis of coal dust explosion suppressant based on surface modification of ammonium dihydrogen phosphate with methyl hydrogen-containing silicone oil. Journal of Loss Prevention in the Process Industries 64:104059. doi:10.1016/j.jlp.2020.104059.
  • Lu, K., X. Chen, Z. Luo, and Y. Wang. 2022. Inhibiting effects investigation of pulverized coal explosion using melamine cyanurate. Powder Technology. doi:10.1016/j.powtec.2022.117300.
  • Mustafa, V. 2012. Simultaneous thermogravimetry-calorimetry study on the combustion of coal samples: Effect of heating rate. Energy Conversion and Management 53 (1):40–44. doi:10.1016/j.enconman.2011.08.005.
  • Păcurariu, C., and I. Lazău. 2012. Non-isothermal crystallization kinetics of some glass-ceramics with pyroxene structure. Journal of Non-Crystalline Solids 358 (23):3332–37. doi:10.1016/j.jnoncrysol.2012.08.008.
  • Ren, X., X. Hu, D. Xue, and Y. Li. 2019. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. Journal of Hazardous Materials 371:643–54. doi:10.1016/j.jhazmat.2019.03.041.
  • Ren, X., X. Hu, W. Cheng, and S. Bian. 2020. Study of resource utilization and fire prevention characteristics of a novel gel formulated from coal mine sludge (MS). Fuel 267:117261. doi:10.1016/j.fuel.2020.117261.
  • Wang, X., Y. Zhang, B. Liu, and L. Peng. 2019. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust. Journal of Hazardous Materials 365:555–64. doi:10.1016/j.jhazmat.2018.11.044.
  • Yin, H., H. Dai, and G. Liang. 2021. Inhibition evaluation of magnesium hydroxide, aluminum hydroxide, and hydrotalcite on the flame propagation of coal dust. Process Safety and Environmental Protection 157:443–57. doi:10.1016/j.psep.2021.11.048.
  • Yin, H., H. Dai, and G. Liang. 2022. Inerting mechanism of magnesium carbonate hydroxide pentahydrate for coal dust deflagration under coal gasification. Powder Technology 400:117274. doi:10.1016/j.powtec.2022.117274.
  • Yu, H., C. Wang, L. Pang, and Y. Cui. 2019. Inhibiting effect of coal fly ash on minimum ignition temperature of coal dust clouds. Journal of Loss Prevention in the Process Industries 61:24–29. doi:10.1016/j.jlp.2019.05.018.
  • Yuan, C., P. Amyotte, M. Hossain, and C. Li. 2014. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder. Journal of Hazardous Materials 275:1–9. doi:10.1016/j.jhazmat.2014.04.047.
  • Zhang, J., P. Xu, L. Sun, and W. Zhang. 2018. Factors influencing and a statistical method for describing dust explosion parameters: A review. Journal of Loss Prevention in the Process Industries 56:386–401. doi:10.1016/j.jlp.2018.09.005.
  • Zhang, J., L. Sun, F. Nie, and H. Zhou. 2019. Effects of particle size distribution on the explosion severity of coal dust. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43(17):2077–87. doi:10.1080/15567036.2019.1654562.
  • Zhang, J., L. Sun, T. Sun, and H. Zhou. 2020. Study on explosion risk of aluminum powder under different dispersions. Journal of Loss Prevention in the Process Industries 64:104042. doi:10.1016/j.jlp.2019.104042.
  • Zhang, J., X. Ren, Y. Wang, J. Liu, Fang, L. 2022. Effect of CaCl2, Al(OH)3 and NH4H2PO4 on the explosion sensitivity of pulverized coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44(2):4565–4574. doi:10.1080/15567036.2022.2077862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.