186
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Impact of the desert climate on the degradation of photovoltaic modules characteristics: a case study

, , &
Pages 6021-6034 | Received 27 Dec 2021, Accepted 10 Jun 2022, Published online: 30 Jun 2022

References

  • Aboagye, B. S, E.A. Gyamfi, S. A. Ofosu, and S. Djordjevic, et al. 2021. Degradation analysis of installed solar photovoltaic (PV) modules under outdoor conditions in Ghana. Energy Reports 7:6921–31. doi:10.1016/j.egyr.2021.10.046.
  • Arab, A. H., Y. Bakelli, S. Semaoui, F. Bandou, and I. H. Mahammed. December, 2015. Long term performance of crystalline silicon photovoltaic modules. In 2015 3rd international renewable and sustainable energy conference (IRSEC), Marrakech & Ouarzazate, Morroco., 1–5. IEEE, doi:10.1109/IRSEC.2015.7454945.
  • Atsu, D., I. Seres, M. Aghaei, and I. Farkas. 2020. Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan. Renewable Energy 162:285–95. d´ec 1. doi:10.1016/j.renene.2020.08.021.
  • Bansal, N., S. P. Jaiswal, and G. Singh. 2022. Long term operational performance and experimental on-field degradation measurement of 10 MW PV plant in remote location in India. Energy for Sustainable Development 67:135–50. doi:10.1016/j.esd.2022.01.007.
  • Bouaichi, A., A. El Amrani, M. Ouhadou, A. Lfakir, and C. Messaoudi. 2020. In-situ performance and degradation of three different hotovoltaic module technologies installed in arid climate of Morocco. Energy 190:116368. January 1, doi:10.1016/j.energy.2019.116368.
  • Bouaichi, A., A. A. Merrouni, A. El Amrani, B. Jaeckel, C. Hajjaj, Z. Naimi, and C. Messaoudi. 2022. Long-term experiment on p-type crystalline PV module with potential induced degradation: Impact on power performance and evaluation of recovery mode. Renewable Energy 183:472–79. doi:10.1016/j.renene.2021.11.031.
  • Carigiet, F., C. J. Brabec, and F. P. Baumgartner. 2021. Long-term power degradation analysis of crystalline silicon PV modules using indoor and outdoor measurement techniques. Renewable and Sustainable Energy Reviews 144:111005. juill 1. doi:10.1016/j.rser.2021.111005.
  • Chattopadhyay, S., R. Dubey, V. Kuthanazhi, J. J. John, C. S. Solanki, A. Kottantharayil, B. M. Arora, K. L. Narasimhan, V. Kuber, J. Vasi, et al. 2014. Visual degradation in field-aged crystalline silicon PV modules in India and correlation with electrical degradation. IEEE Journal of Photovoltaics 4 (6):1470–76. doi:10.1109/JPHOTOV.2014.2356717.
  • Daher, D. H., L. Gaillard, and C. Ménézo. 2022. Experimental assessment of long-term performance degradation for a PV power plant operating in a desert maritime climate. Renewable Energy. doi:10.1016/j.renene.2022.01.056.
  • Fonseca, J. E. F., F. S. de Oliveira, C. W. Massen Prieb, and A. Krenzinger. 2020. Degradation analysis of a photovoltaic generator after operating for 15 years in southern Brazil. Solar Energy 196:196–206. January 15. doi:10.1016/j.solener.2019.11.086.
  • Hadj Arab, A., F. Chenlo, and M. Benghanem. 2004. Loss-of-load probability of photovoltaic water pumping systems. Solar Energy 76 (6):713–23. doi:10.1016/j.solener.2004.01.006.
  • IRENA. 2019. Renewable capacity statistics 2019, International Renewable Energy Agency(IRENA). Abu Dhabi: IRENA.
  • Kahoul, N., M. Houabes, and M. Sadok. 2014. Assessing the early degradation of photovoltaic modules performance in the Saharan region. Energy Conversion and Management 82:320–26. doi:10.1016/j.enconman.2014.03.034.
  • Kazem, H. A., A. H. Al-Waeli, M. T. Chaichan, and K. Sopian. 2022. Modeling and experimental validation of dust impact on solar cell performance. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2021.2024922.
  • Lillo-Sa´nchez, L., G. Lo´pez-Lara, J. Vera-Medina, E. P´erez-Aparicio, and I. Lillo-Bravo. 2021. Degradation analysis of photo voltaic modules after operating for 22 years. A case study with comparisons. Solar Energy 222:84–94. juill 1. doi:10.1016/j.solener.2021.04.026.
  • Liu, J., M. Wang, A. J. Curran, A. Maroof Karimi, W. Huang, Schnabel, E., Kohl, M., Braid, J. L, and French, R. H., et al. 2019a. Real-world PV module degradation across climate zones determined from suns-voc, loss factors and I-V steps analysis of eight years of I-V, pmp time-series datastreams. In:2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 680-6. doi:10.1109/PVSC40753.2019.8980541.
  • Liu, Z., M. L. Castillo, A. Youssef, J. G. Serdy, A. Watts, C. Schmid, S. Kurtz, I. M. Peters, T. Buonassisi, et al. 2019b. Quantitative analysis of degradation mechanisms in 22 30-year-old PV modules. Solar Energy Materials and Solar Cells 200:110019. doi:10.1016/j.solmat.2019.110019.
  • Machida, K., T. Yamazaki, and T. Hirasawa. 1997. Secular degradation of crystalline photovoltaic modules. Solar Energy Materials and Solar Cells 47 (1):149–53. doi:10.1016/S0927-0248(97)00035-4.
  • Maghami, M. R., H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani. 2016. Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews 59:1307–16. doi:10.1016/j.rser.2016.01.044.
  • Makrides, G., B. Zinsser, M. Schubert, and G. E. Georghiou. 2014. Performance loss rate of twelve photovoltaic technologies under field conditions using statistical techniques. Solar Energy 103:28–42. doi:10.1016/j.solener.2014.02.011.
  • Ngure, S. M., A. B. Makokha, E. O. Ataro, M. S. Adaramola, M. Noussan, J. Reichl, M. V. Rocco, A. Sciullo, and S. Vergalli. 2022. Degradation analysis of solar photovoltaic module under warm semiarid and tropical savanna climatic conditions of East Africa. International Journal of Energy 238. doi:10.1007/s40095-021-00454-5.
  • Noman, M., S. Tu, S. Ahmad, F. U. Zafar, H. A. Khan, S. U. Rehman, O. U. Rehman, A. D. Khan, and O. U. Rehman. 2022. Assessing the reliability and degradation of 10–35 years field-aged PV modules. PLoS One 17 (1):e0261066. doi:10.1371/journal.pone.0261066.
  • Orioli, A., and A. Di Gangi. 2013. A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Applied Energy 102:1160–77. doi:10.1016/j.apenergy.2012.06.036.
  • Othman, R., and T. M. Hatem. 2022. Assessment of PV technologies outdoor performance and commercial software estimation in hot and dry climates. Journal of Cleaner Production 340:130819. doi:10.1016/j.jclepro.2022.130819.
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11 (5):1633–44. doi:10.5194/hess-11-1633-2007.
  • PVPM2540C PV test instruments, IV curve tracers. PV test instruments, IV curve tracers. Accessed November 1, 2019. https://www.pvengineering.de.
  • Skoczek, A., T. Sample, E. Dunlop, and H. Ossenbrink. 2008. Electrical performance results from physical stress testing of commercial PV modules to the IEC 61215 test sequence. Solar Energy Materials and Solar Cells 92 (12):1593–604. doi:10.1016/j.solmat.2008.07.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.