124
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Combustion characteristics and emissions formation of a compression ignition engine fueled with C8 biofuels blends

, &
Pages 5991-6008 | Received 24 Mar 2022, Accepted 21 Jun 2022, Published online: 29 Jun 2022

References

  • Atabani, A. E., and S. Al Kulthoom. 2020. Spectral, thermoanalytical characterizations, properties, engine and emission performance of complementary biodiesel-diesel-pentanol/octanol blends. Fuel 282:118849. doi:10.1016/j.fuel.2020.118849.
  • Daubert, T. E. 1989. Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation. Design Institute for Physacal Property Data (DIPPR).
  • El-Seesy, A. I., M. S. Waly, Z. He, H. M. El-Batsh, A. Nasser, and R. M. El-Zoheiry. 2021. Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Conversion and Management 240:114268. doi:10.1016/j.enconman.2021.114268.
  • Gao, Z., L. Zhu, X. Zou, C. Liu, B. Tian, and Z. Huang. 2019. Soot reduction effects of dibutyl ether (DBE) addition to a biodiesel surrogate in laminar coflow diffusion flames. Proceedings of the Combustion Institute 37 (1):1265–72. doi:10.1016/j.proci.2018.05.083.
  • García, A., J. Monsalve-Serrano, D. Villalta, M. Zubel, and S. Pischinger. 2018. Potential of 1-octanol and di-n-butyl ether (DNBE) to improve the performance and reduce the emissions of a direct injected compression ignition diesel engine. Energy Conversion and Management 177:563–71. doi:10.1016/j.enconman.2018.10.009.
  • Ghadikolaei, M. A., L. Wei, C. S. Cheung, K.-F. Yung, and Z. Ning. 2020. Particulate emission and physical properties of particulate matter emitted from a diesel engine fueled with ternary fuel (diesel-biodiesel-ethanol) in blended and fumigation modes. Fuel 263:116665. doi:10.1016/j.fuel.2019.116665.
  • Godiño, J. A., M. T. García, and F. J. Aguilar. 2022. Experimental analysis of late direct injection combustion mode in a compression-ignition engine fuelled with biodiesel/diesel blends. Energy 239:121895. doi:10.1016/j.energy.2021.121895.
  • Golovitchev, V., N. Nordin, R. Jarnicki, and J. Chomiak. 2000. 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model. SAE Technical Paper.
  • Gopal, K., A. P. Sathiyagnanam, B. Rajesh Kumar, S. Saravanan, D. Rana, and B. Sethuramasamyraja. 2018. Prediction of emissions and performance of a diesel engine fueled with n-octanol/diesel blends using response surface methodology. Journal of Cleaner Production 184:423–39. doi:10.1016/j.jclepro.2018.02.204.
  • Heuser, B., M. Jakob, F. Kremer, S. Pischinger, B. Kerschgens, and H. Pitsch. 2013. Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines. SAE International.
  • Hoang, A. T., H. C. Ong, I. M. R. Fattah, C. T. Chong, C. K. Cheng, R. Sakthivel, and Y. S. Ok, et al. 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 223:106997. doi:10.1016/j.fuproc.2021.106997.
  • Hoang, A. T., Z. Huang, S. Nižetić, A. Pandey, X. P. Nguyen, R. Luque, H. C. Ong, Z. Said, T. H. Le, V. V. Pham, et al. 2022. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy. 47(7):4394–425. doi:10.1016/j.ijhydene.2021.11.091.
  • Janssen, A. J., F. W. Kremer, J. H. Baron, M. Muether, S. Pischinger, and J. Klankermayer. 2011. Tailor-made fuels from biomass for homogeneous low-temperature diesel combustion. Energy & Fuels 25 (10):4734–44. doi:10.1021/ef2010139.
  • Kerschgens, B., L. Cai, H. Pitsch, B. Heuser, and S. Pischinger. 2016. Di-n-buthylether, n-octanol, and n-octane as fuel candidates for diesel engine combustion. Combustion and Flame 163:66–78. doi:10.1016/j.combustflame.2015.09.001.
  • Li, J., W. Yang, H. An, and S. Chou. 2015a. Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Applied Energy 160:777–83. doi:10.1016/j.apenergy.2014.08.105.
  • Li, J., W. M. Yang, H. An, D. Z. Zhou, W. B. Yu, J. X. Wang, and L. Li. 2015b. Numerical investigation on the effect of reactivity gradient in an RCCI engine fueled with gasoline and diesel. Energy Conversion and Management 92:342–52. doi:10.1016/j.enconman.2014.12.071.
  • Li, J., W. Yang, H. An, and D. Zhou. 2016. Soot and NO emissions control in a natural gas/diesel fuelled RCCI engine by φ-T map analysis. Combustion Theory and Modelling 21 (2):309–28. doi:10.1080/13647830.2016.1231936.
  • Li, J., D. Zhou, and W. Yang. 2020. A multi-component reaction mechanism of n-butanol, n-octanol, and di-n-buthylether for engine combustion. Fuel 275:117975. doi:10.1016/j.fuel.2020.117975.
  • Li, J., W. Yu, and W. Yang. 2021. Evaluating performance and emissions of a CI engine fueled with n-octanol/diesel and n-butanol/diesel blends under different injection strategies. Fuel 284:119085. doi:10.1016/j.fuel.2020.119085.
  • Maghbouli, A., W. Yang, H. An, J. Li, S. K. Chou, and K. J. Chua. 2013. An advanced combustion model coupled with detailed chemical reaction mechanism for D.I diesel engine simulation. Applied Energy 111:758–70. doi:10.1016/j.apenergy.2013.05.031.
  • Mahalingam, A., Y. Devarajan, S. Radhakrishnan, S. Vellaiyan, and B. Nagappan. 2018. Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. Alexandria Engineering Journal 57 (4):2627–31. doi:10.1016/j.aej.2017.07.009.
  • Nayak, S. K., S. Nižetić, V. V. Pham, Z. Huang, A. I. Ölçer, V. G. Bui, K. Wattanavichien, and A. T. Hoang. 2022. Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. Journal of Cleaner Production 333:130160. doi:10.1016/j.jclepro.2021.130160.
  • Pan, M., Y. Wang, W. Qian, C. Wu, H. Huang, H. Li, and X. Zhou. 2021. Experimental and numerical study on flow, combustion and emission characteristics of CI engine fueled with n-butanol/diesel blends under post-injection strategy. Fuel 292:120267. doi:10.1016/j.fuel.2021.120267.
  • Pham, Q., S. Park, A. K. Agarwal, and S. Park. 2022. Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission. Energy 250:123778. doi:10.1016/j.energy.2022.123778.
  • Raffius, T., T. Ottenwälder, C. Schulz, G. Grünefeld, H.-J. Koß, and S. Pischinger. 2019. Laser spectroscopic investigation of diesel-like jet structure using C8 oxygenates as the fuel. Fuel 235:1515–29. doi:10.1016/j.fuel.2018.07.124.
  • Sidharth, and N. Kumar. 2020. Performance and emission studies of ternary fuel blends of diesel, biodiesel and octanol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (18):2277–96. doi:10.1080/15567036.2019.1607940.
  • Torres, D. J., and M. F. Trujillo. 2006. KIVA-4: An unstructured ALE code for compressible gas flow with sprays. Journal of Computational Physics 219 (2):943–75. doi:10.1016/j.jcp.2006.07.006.
  • Wang, Q., S. Yin, and J. Ni. 2021. The effects of n-pentanol, di-n-butyl ether (DBE) and exhaust gas recirculation on performance and emissions in a compression ignition engine. Fuel 284:118961. doi:10.1016/j.fuel.2020.118961.
  • Wang, D., X. Yu, J. Li, and W. Yang. 2022. Effects of combustion chamber shapes on combustion and emission characteristics for the N-octanol fueled compression ignition engine. Journal of Energy Engineering 148 (3):04022011. doi:10.1061/(ASCE)EY.1943-7897.0000839.
  • Wang, Q., J. Ni, and R. Huang. 2022. The potential of oxygenated fuels (n-octanol, methylal, and dimethyl carbonate) as an alternative fuel for compression ignition engines with different load conditions. Fuel 309:122129. doi:10.1016/j.fuel.2021.122129.
  • Wu, C., Y. Wang, H. Sang, H. Huang, Q. Wang, and M. Pan. 2021. Potential of di-n-butyl ether as an alternative fuel for compression ignition engines with different EGR rates and injection pressure. Journal of Energy Engineering 147 (6):04021042. doi:10.1061/(ASCE)EY.1943-7897.0000790.
  • Yesilyurt, M. K., and A. Cakmak. 2021. An extensive investigation of utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI engine – The effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characteristics. Fuel 305:121453.
  • Zehni, A., and R. K. Saray. 2018. Comparison of late PCCI combustion, performance and emissions of diesel engine for B20 and B100 fuels by KIVA-CHEMKIN coupling. Renewable Energy 122:118–30. doi:10.1016/j.renene.2018.01.046.
  • Zhao, F., W. Yang, D. Zhou, W. Yu, J. Li, and K. L. Tay. 2017. Numerical modelling of soot formation and oxidation using phenomenological soot modelling approach in a dual-fueled compression ignition engine. Fuel 188:382–89. doi:10.1016/j.fuel.2016.10.054.
  • Zhu, J., D. Zhou, L. Yu, Y. Qian, and X. Lu. 2022. Construction of a skeletal multi-component diesel surrogate model by integrating chemical lumping and genetic algorithm. Fuel 313:122711. doi:10.1016/j.fuel.2021.122711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.