120
Views
0
CrossRef citations to date
0
Altmetric
Report

Remediation of sulfur in two Turkish lignites under various treatments

ORCID Icon, &
Pages 6456-6465 | Received 03 Mar 2022, Accepted 07 Jun 2022, Published online: 18 Jul 2022

References

  • Abdollahy, M., A. Z. Moghaddam, and K. Rami. 2006. Desulphurization of Mezino Coal Using Combination of Flotation and Leaching with Potassium Hydroxide/Methanol. Fuel 85 (7–8):1117–24. doi:10.1016/j.fuel.2005.10.011.
  • ASTM. 1983. American society for testing and materials annual book of ASTM standards part 26: method D 2015, D 2072, D 3174 and D 3177. Philadelphia, PA: ANSI.org.
  • Barzegar, R., A. Yozgatlıgil, and A. T. Atımtay. 2022. Co-combustion of high and low ash lignites with raw and torrefied biomass under air and oxy-fuel combustion atmospheres. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2022.2038313.
  • Cai, S., S. Zhang, Y. Wei, F. Sher, L. Wen, J. Xu, L. Hu, and L. Hu. 2021. A novel method for removing organic sulfur from high-sulfur coal: Migration of organic sulfur during microwave treatment with NaOH-H2O2. Fuel 289:119800. doi:10.1016/j.fuel.2020.119800.
  • Coal Report, Turkish Coal Enterprises. 2017. https://enerji.mmo.org.tr/wp-content/uploads/2019/05/2017-K%C3%B6m%C3%BCr-Sekt%C3%B6r-Raporu_21.02.19.pdf, Accessed 10 February 2021.
  • Doymaz, İ., J. Gülen, S. Pişkin, and S. Toprak. 2007. The effect of aqueous and various acid treatments on the removal of mineral matter in asphaltite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (4):337–46. doi:10.1080/15567030600819882.
  • Ge, L., Y. Zhang, Z. Wang, J. Zhua, and K. Cen. 2013. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals. Energy Conversion and Management 71:84–91. doi:10.1016/j.enconman.2013.03.021.
  • Gülen, J., İ. Doymaz, S. Toprak, and S. Pişkin. 2005. Removal of mineral matter from silopi-harput asphaltite by various acid treatment. Energy Sources 27 (15):1457–64. doi:10.1080/009083190523307.
  • Gülen, J. 2007. Mineral matter identification in nallihan lignite by leaching with mineral acids. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (3):231–37. doi:10.1080/009083190965514.
  • Gülen, J., S. Pişkin, and İ. Doymaz. 2011. Treatments of çan lignite with some mineral acids after sodium hydroxide washing. International Journal of Chemistry 3 (3):75–80. doi:10.5539/ijc.v3n3p75.
  • Gülen, J., İ. Doymaz, S. Pişkin, and S. Ongen. 2013. The effects of temperature and mineral acids on the demineralization degree of nallihan lignite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 35 (3):202–08. doi:10.1080/15567036.2012.636725.
  • Gülen, J., A. Boztepe, B. Öztürk, M. Kaya, and M. Kumral. 2020. Chemical beneficiation of two Turkish lignites with various chemical treatments. Periodico di Mineralogia 89 (2):135–43.
  • Kang, W., H. Xun, and J. Hu. 2008. Study of ultrasonic treatment on the surface composition and the flotation performance of high sulphur coal. Fuel Processing Technology 89 (12):1337–44. doi:10.1016/j.fuproc.2008.06.003.
  • Kingman, S. W. 2006. Recent developments in microwave processing of minerals. International Materials Reviews 51 (1):1–12. doi:10.1179/174328006X79472.
  • Kumar, H., E. Lester, S. Kingman, R. Bourne, C. Avila, A. Jones, J. Robinson, P. M. Halleck, and J. P. Mathews. 2011. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy. International Journal of Coal Geology 88 (1):75–82. doi:10.1016/j.coal.2011.07.007.
  • Lakhmira, M. A., S. A. Soomroa, I. N. Unara, and F. Akhterb. 2022. A review of chemical demineralization and desulphurization of high ash & high sulphur lignite coal. Jurnal Kejuruteraan 34 (3):353–64.
  • Li, Z., T. Sun, and J. Jia. 2010. An extremely rapid and mild coal desulfurization new process: sodium borohydrate reduction. Fuel Processing Technology 91 (9):1162–67. doi:10.1016/j.fuproc.2010.03.031.
  • Li, G. Y., J. X. Ding, H. Zhang, C. X. Hou, F. Wang, Y. Y. Li, and Y. H. Lang. 2015. ReaxFF simulations of hydrothermal treatment of lignite and its impact on chemical structures. Fuel 154:243–51. doi:10.1016/j.fuel.2015.03.082.
  • Li, H., B. Lin, W. Yang, C. Zheng, Y. Hong, Y. Gao, T. Liu, and S. Wu. 2016. Experimental study on the petrophysical variation of different rank coals with microwave treatment. International Journal of Coal Geology 154:82–91. doi:10.1016/j.coal.2015.12.010.
  • Li, H., S. Shi, B. Lu, J. Li, Q. Ye, Y. Lu, Z. Wang, Y. Hong, and X. Zhu. 2019. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy 187:115986. doi:10.1016/j.energy.2019.115986.
  • Liu, K., J. Yang, J. Jia, and Y. Wang. 2008. Desulphurization of coal via low-temperature atmospheric alkaline oxidation. Chemosphere 71 (1):183–88. doi:10.1016/j.chemosphere.2007.10.005.
  • Liu, J. Z., J. F. Zhu, J. Cheng, J. H. Zhou, and K. F. Cen. 2015. Pore structure and fractal analysis of ximeng lignite under microwave irradiation. Fuel 146:41–50. doi:10.1016/j.fuel.2015.01.019.
  • Liu, J., Z. Wang, Z. Qiao, W. Chen, L. Zheng, and J. Zhou. 2020. Evaluation on the microwave-assisted chemical desulfurization for organic sulfur removal. Journal of Cleaner Production 267:121878. doi:10.1016/j.jclepro.2020.121878.
  • Macias-Perez, M. C., M. A. Lillo-Rodenas, A. Bueno-Lopez, C. S. M. De Lecea, and A. Lineras-Soleno. 2008. SO2 retention on CaO/activated carbon sorbents. part ii: effect of the activated carbon support. Fuel 87 (12):2544–50. doi:10.1016/j.fuel.2008.01.022.
  • Meshram, P., B. K. Purohit, M. K. Sinha, S. K. Sahu, and B. D. Pandey. 2015. Demineralization of low-grade coal – a review. Renewable and Sustainable Energy Reviews 41:745–61. doi:10.1016/j.rser.2014.08.072.
  • Ren, Y., Z. Xu, and S. Gu. 2022. Physicochemical properties and slurry ability changes of lignite after microwave upgrade with the assist of lignite semi-coke. Energy 252:123728. doi:10.1016/j.energy.2022.123728.
  • Restrepo, A., E. Bazzo, and R. Mivake. 2015. A life cycle assessment of the Brazilian coal used for electric power generation. Journal of Cleaner Production 92:179–86. doi:10.1016/j.jclepro.2014.12.065.
  • Saha, P., N. Saha, S. Mazumder, and M. T. Reza. 2021. Transformation of sulfur during co-hydrothermal carbonization of coal waste and food waste. Energies 14 (8):2271. doi:10.3390/en14082271.
  • Sahoo, B. K., S. De, and B. C. Meikap. 2011. Improvement of grinding characteristics of Indian coal by microwave pre-treatment. Fuel Processing Technology 92 (10):1920–28. doi:10.1016/j.fuproc.2011.05.012.
  • Shen, S., J. He, M. Pan, Z. Zhou, C. Feng, and G. Liang. 2012. Effective removal of sulfur from high-sulfur coal prior to use by dry chlorination at low temperature. Journal of Hazardous Materials 217-218:116–22. doi:10.1016/j.jhazmat.2012.03.001.
  • Siagi, Z. O., M. Mbarawa, A. R. Mohamed, K. T. Lee, and I. Dahlan. 2007. The effects of limestone type on the sulphur capture of slaked lime. Fuel 86 (17–18):2660–66. doi:10.1016/j.fuel.2007.03.034.
  • Song, S., B. Qin, H. Xin, X. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Thanu, D. P., M. Zhao, Z. Han, and M. Keswani. 2019. Fundamentals and applications of sonic technology. Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques 11:1–48.
  • Uslu, T., and U. Atalay. 2003. Microwave heating of coal for enhanced magnetic removal of pyrite. Fuel Processing Technology 85 (1):21–29. doi:10.1016/S0378-3820(03)00094-8.
  • Wang, S., J. Wu, J. Liu, N. Li, X. Zeng, and K. Cen. 2019. Effect of ammonia nitrogen and low-molecular-weight organics on the adsorption of additives on coal surface: A combination of experiments and molecular dynamics simulations. Chemical Engineering Science 205:134–42. doi:10.1016/j.ces.2019.04.042.
  • Xia, W. 2018. A novel and effective method for removing organic sulfur from low-rank coal. Journal of Cleaner Production 172:2708–10. doi:10.1016/j.jclepro.2017.11.141.
  • Xu, G., J. Huang, G. Hu, N. Yang, J. Zhu, and P. Chang. 2020. Experimental study on effective microwave heating/fracturing of coal with various dielectric property and water saturation. Fuel Processing Technology 202:106378. doi:10.1016/j.fuproc.2020.106378.
  • Xu, Y., Y. Liu, Y. Bu, M. Chen, and L. Wang. 2021. Review on the ionic liquids affecting the desulfurization of coal by chemical agents. Journal of Cleaner Production 284:124788. doi:10.1016/j.jclepro.2020.124788.
  • Zilberchmidt, M., M. Shpirt, K. Komnitsas, and I. Paspaliaris. 2004. Feasibility of thermal treatments of high sulphur coal wastes. Minerals Engineering 17 (2):175–82. doi:10.1016/j.mineng.2003.10.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.