618
Views
12
CrossRef citations to date
0
Altmetric
Review

A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6709-6736 | Received 04 Apr 2022, Accepted 06 Jul 2022, Published online: 27 Jul 2022

References

  • Abbes, D., A. Martinez, and G. Champenois. 2013. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Mathematics and Computers in Simulation 98 (2013):46–62. doi:10.1016/j.matcom.2013.05.004.
  • Ahmadi, S., and S. Abdi. 2016. Application of the Hybrid Big Bang – Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Solar Energy 134 (2016):366–74. doi:10.1016/j.solener.2016.05.019.
  • Al Busaidi, A. S., H. A. Kazem, A. H. Al-Badi, and M. Farooq Khan. 2016. A review of optimum sizing of hybrid PV-Wind renewable energy systems in Oman. Renewable and Sustainable Energy Reviews 53:185–93. doi:10.1016/j.rser.2015.08.039.
  • Al-falahi, M. D. A., S. D. G. Jayasinghe, and H. Enshaei. 2017. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Conversion and Management 143:252–74. doi:10.1016/j.enconman.2017.04.019.
  • Al-Waeli, A. H. A., K. Sopian, H. A. Kazem, and M. T. Chaichan. 2017. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renewable and Sustainable Energy Reviews 77 (2017):109–30. doi:10.1016/j.rser.2017.03.126.
  • Al-Waeli, A. H. A., K. Sopian, H. A. Kazem, and M. T. Chaichan. 2018. Nanofluid based grid connected PV/T systems in Malaysia: A techno-economical assessment. Sustainable Energy Technologies and Assessments 28. doi:10.1016/j.seta.2018.06.017.
  • Ali H, A., H. Alwaeli, A. Kazem, M. T. C, and K. S. 2019. Photovoltaic/Thermal (PV/T) systems: Principles, design, and applications. 1st ed. Switzerland: Springer Nature.
  • Alsadi, S., and T. Khatib. 2018. Photovoltaic power systems optimization research status: A review of criteria, constrains, models, techniques, and software tools. Applied Sciences 8 (10):1761. doi:10.3390/app8101761.
  • Anoune, K., M. Bouya, A. Astito, and A. Ben. 2018. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system : A review. Renewable and Sustainable Energy Reviews 93(October):652–73. 2017. doi:10.1016/j.rser.2018.05.032.
  • Aronson, E. A., D. L. Caskey, and B. C. Caskey. 1981. SOLSTOR description and user’s guide, Vols. SAND79-233. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
  • Askarzadeh, A. 2013. A discrete chaotic harmony search-based simulated annealing algorithm for optimum design of PV/wind hybrid system. Solar Energy 97 (2013):93–101. doi:10.1016/j.solener.2013.08.014.
  • Askarzadeh, A., and S. Coelho. 2015. A novel framework for optimization of a grid independent hybrid renewable energy system : A case study of Iran. Solar Energy 112 (2015):383–96. doi:10.1016/j.solener.2014.12.013.
  • Automation, J., R. Verma, A. Gupta, and K. Singh. 2008. Simulation Software Evaluation and Selection: Comprehensive Framework. Automation & Systems Engineering 4:221–34.
  • Baghaee, H. R., M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi. 2016. Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy 115 (2016):1022–41. doi:10.1016/j.energy.2016.09.007.
  • Baneshi, M., and F. Hadianfard. 2016. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Conversion and Management 127 (2016):233–44. doi:10.1016/j.enconman.2016.09.008.
  • Bashahu, M., and P. Nkundabakura. 2007. Review and tests of methods for the determination of the solar cell junction ideality factors. Solar Energy 81 (7):856–63. doi:10.1016/j.solener.2006.11.002.
  • Bhuiyan, F. A., A. Yazdani, and S. L. Primak. 2015. Optimal sizing approach for islanded microgrids. IET Renewable Power Generation 9 (June 2014):166–75. doi:10.1049/iet-rpg.2013.0416.
  • Bissels, G. M. M. W., J. J. Schermer, M. A. H. Asselbergs, E. J. Haverkamp, P. Mulder, G. J. Bauhuis, and E. Vlieg. 2014. Solar Energy Materials & Solar Cells Theoretical review of series resistance determination methods for solar cells. Solar Energy Materials and Solar Cells 130:605–14. doi:10.1016/j.solmat.2014.08.003.
  • Boyd, M. T., S. A. Klein, D. T. Reindl, and B. P. Dougherty. 2011. Evaluation and validation of equivalent circuit photovoltaic solar cell performance models. Journal of Solar Energy Engineering 133 (2):1–14. doi:10.1115/1.4003584.
  • Cameron, C. P., W. E. Boyson, and D. M. Riley (2008). Comparison of PV system performance-model predictions with measured PV system performance. Conference Record of the IEEE Photovoltaic Specialists Conference, 2–7. San Diego, CA, USA. doi: 10.1109/PVSC.2008.4922865
  • Castro, P. M., R. M. Lima, A. Estanqueiro, G. Energia, and F. De Ci. 2015. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renewable Energy 83 (2015):646–57. doi:10.1016/j.renene.2015.04.066.
  • Chang, K., and G. Lin. 2015. Simulation modelling practice and theory optimal design of hybrid renewable energy systems using simulation optimization. Simulation Modelling Practice and Theory 52 (2015):40–51. doi:10.1016/j.simpat.2014.12.002.
  • Chen, C., S. Duan, T. Cai, and B. Liu. 2011. Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy 85 (11):2856–70. doi:10.1016/j.solener.2011.08.027.
  • Chen, H. 2013. Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability. Applied Energy 103 (2013):155–64. doi:10.1016/j.apenergy.2012.09.022.
  • Cho, J., M. Chun, and W. Hong. 2016. Structure optimization of stand-alone renewable power systems based on multi object function. Energi 9 (649):1–19. doi:10.3390/en9080649.
  • Connolly, D., H. Lund, B. V. Mathiesen, and M. Leahy. 2010. A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy 87 (4):1059–82. doi:10.1016/j.apenergy.2009.09.026.
  • De Soto, W., S. A. Klein, and W. A. Beckman. 2006. Improvement and validation of a model for photovoltaic array performance. Solar Energy 80 (2006):78–88. doi:10.1016/j.solener.2005.06.010.
  • Demenkova, T. A., O. A. Korzhova, and A. A. Phinenko. 2017. Modelling of algorithms for solar panels control systems. Procedia - Procedia Computer Science 103 (October 2016):589–96. doi:10.1016/j.procs.2017.01.072.
  • Deshmukh, S., Y. Baghzouz, and R. F. Boehm (2006). ISEC2006-99151 Design of grid connected-PV system for a Hydrogen refueling station. International Solar Energy Conference, 171–75. Denver, Colorado, USA.
  • Dufo-l, R., I. R. Cristóbal-Monreal, and J. M. Yusta. 2016. Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renewable Energy 94 (2016):280–93. doi:10.1016/j.renene.2016.03.065.
  • Dufo-lópez, R., J. L. Bernal-agustín, J. M. Yusta-loyo, J. A. Domínguez-navarro, I. J. Ramírez-rosado, J. Lujano, and I. Aso. 2011. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV – Wind – Diesel systems with batteries storage. Applied Energy 88 (2011):4033–41. doi:10.1016/j.apenergy.2011.04.019.
  • Eduardo, C., C. Nogueira, M. L. Vidotto, R. K. Niedzialkoski, S. Nelson, M. De Souza, I. Werncke, and I. Werncke. 2014. Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil. Renewable and Sustainable Energy Reviews 29 (2014):151–57. doi:10.1016/j.rser.2013.08.071.
  • Ezeanya, E. K., G. H. Massiha, W. E. Simon, J. R. Raush, T. L. Chambers, E. K. Ezeanya, … R. Jonathan. 2018. System advisor model (SAM) simulation modelling of a concentrating solar thermal power plant with comparison to actual performance data. Cogent Engineering 5 (1):1–26. doi:10.1080/23311916.2018.1524051.
  • Fadaeenejad, M., M. A. M. Radzi, M. Z. A. Abkadir, and H. Hizam. 2014. Assessment of hybrid renewable power sources for rural electri fi cation in Malaysia. Renewable and Sustainable Energy Reviews 30 (2014):299–305. doi:10.1016/j.rser.2013.10.003.
  • Fathy, A. 2016. A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt. Renewable Energy 95 (2016):367–80. doi:10.1016/j.renene.2016.04.030.
  • Fayaz, H., Rahim, N. A., Saidur, R., & Hasanuzzaman, M. (2018, May). Techno-economıc analysıs of evacuated tube solar water heater usıng F-chart method. In IOP Conference Series: Materials Science and Engineering (Vol. 358, No. 1, p. 012016). IOP Publishing.
  • Florschuetz, L. W. 1979. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy 22 (4):361–66. doi:10.1016/0038-092X(79)90190-7.
  • Gan, L. K., J. K. H. Shek, and M. A. Mueller. 2015. Hybrid wind – Photovoltaic – Diesel – Battery system sizing tool development using empirical approach, life-cycle cost and performance analysis : A case study in Scotland. ENERGY CONVERSION AND MANAGEMENT 106:479–94. doi:10.1016/j.enconman.2015.09.029.
  • Gharavi, H., M. M. Ardehali, and S. Ghanbari-tichi. 2015. Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions. Renewable Energy 78 (2015):427–37. doi:10.1016/j.renene.2015.01.029.
  • Gholami, A., M. Ameri, M. Zandi, R. G. Ghoachani, S. P, and H. A. K. 2022. Step-by-step guide to model photovoltaic panels: An Up-To-Date comparative review study. IEEE Journal of Photovoltaics 12 (4):915–28. doi:10.1109/JPHOTOV.2022.3169525.
  • Gilman, P., N. Blair, M. Mehos, C. Christensen, P. Gilman, N. Blair, … C. Christensen. 2008. Solar advisor model user guide for version 2 . 0 solar advisor model user guide for version 2 . 0.
  • Goldstein, L. H., and G. R. Case. 1978. PVSS-A photovoltaic system simulation program. Solar Energy 21 (1):37–43. doi:10.1016/0038-092X(78)90114-7.
  • Green, H. J., and J. Manwell. 1995. HYBRID2–A versatile model of the performance of hybrid power systems. (No. NREL/TP-441-7807; CONF-950309-1). National Renewable Energy Lab.(NREL), Golden, CO (United States).
  • Gupta, R. A., R. Kumar, and A. Kumar. 2015. BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting. Renewable and Sustainable Energy Reviews 2015:1366–75. doi:10.1016/j.rser.2014.09.017.
  • Hassan, A., M. Saadawi, M. Kandil, and M. Saeed. 2015. Modified particle swarm optimisation technique for optimal design of small renewable energy system supplying a specific load at Mansoura University. 9 (2015):474–83. doi:10.1049/iet-rpg.2014.0170.
  • Hong, Y., S. Member, and R. Lian. 2012. Optimal Sizing of Hybrid Wind/PV/Diesel generation in a stand-alone power system using Markov-based genetic algorithm. IEEE Transactions on Power Delivery 27 (2):640–47. doi:10.1109/TPWRD.2011.2177102.
  • Imam, A. A., Y. A. Al-turki, and S. K. R. 2020. Techno-economic feasibility assessment of grid-connected pv systems for residential buildings in Saudi Arabia — A case study roughly. Sustainability 12 (1): 262.
  • Ishaque, K., Z. Salam, and H. Taheri. 2011. Accurate MATLAB Simulink PV system simulator based on a two-diode model. Journal of Power Electronics 11 (2):179–87. doi:10.6113/JPE.2011.11.2.179.
  • Kaabeche, A., and R. Ibtiouen. 2014. Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system. Solar Energy 103 (2014):171–82. doi:10.1016/j.solener.2014.02.017.
  • Kaldellis, J. K., and P. Fragos. 2011. Ash deposition impact on the energy performance of photovoltaic generators. Journal of Cleaner Production 19 (4):311–17. doi:10.1016/j.jclepro.2010.11.008.
  • Kamjoo, A., A. Maheri, A. M. Dizqah, and G. A. Putrus. 2016. Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. Electrical Power and Energy Systems 74 (2016):187–94. doi:10.1016/j.ijepes.2015.07.007.
  • Katsigiannis, Y. A., P. S. Georgilakis, S. Member, and E. S. Karapidakis. 2012. Hybrid simulated annealing – tabu search method for optimal sizing of autonomous power systems with renewables. IEEE Transactions on Sustainable Energy 3 (3):330–38. doi:10.1109/TSTE.2012.2184840.
  • Kazem, H. A., and T. Khatib. 2013. A novel numerical algorithm for optimal sizing of a photovoltaic/wind/ diesel generator/battery microgrid using loss of load probability index. International Journal of Photoenergy 2013. doi:10.1155/2013/718596.
  • Kazem, H. A., T. Khatib, and A. A. K. Alwaeli (2013). Optimization of photovoltaic modules tilt angle for Oman. Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013. Malaysia. 10.1109/PEOCO.2013.6564637
  • Kazem, H. A., T. Khatib, and K. Sopian. 2013. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy and Buildings 61. doi:10.1016/j.enbuild.2013.02.011.
  • Kazem, H. A., T. Khatib, and K. Sopian. 2013. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy and Buildings 61:108–15. doi:10.1016/j.enbuild.2013.02.011.
  • Kazem, H. A., T. Khatib, and K. Sopian. 2013. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy and Buildings 61:108–15.
  • Kazem, H. A., and T. Khatib. 2013. Techno-economical assessment of grid connected photovoltaic power systems productivity in Sohar, Oman. Sustainable Energy Technologies and Assessments 3:61–65. doi:10.1016/j.seta.2013.06.002.
  • Kazem, H. A., T. Khatib, K. Sopian, and W. Elmenreich. 2014. Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions. Energy and Buildings 82:123–29. doi:10.1016/j.enbuild.2014.06.048.
  • Kazem, H. A. 2016. Teaching photovoltaic principles at the university. Photovoltaics for Sustainable Electricity and Buildings. doi:10.1007/978-3-319-39280-6_6.
  • Kazem, H. A. 2020 March. Evaluation of PV output in terms of environmental impact based on mathematical and artificial neural network models. International Journal of Energy Research 1–17. doi:10.1002/er.5564.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020. A review of dust accumulation and cleaning methods for solar photovoltaic systems. Journal of Cleaner Production 276:123187. doi:10.1016/j.jclepro.2020.123187.
  • Kendrick, L., J. Pihl, I. Weinstock, D. Meiners, and D. Trujillo. 2003. Hybrid generation model simulator (HybSim). SAND2003-3790A, Sandia National Laboratories, Albuquerque, NM.
  • Khatib, T., A. Mohamed, and K. Sopian. 2012. Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia. Energy and Buildings 47:321–31. doi:10.1016/j.enbuild.2011.12.006.
  • Khatib, T., K. Sopian, and H. A. Kazem. 2013. Actual performance and characteristic of a grid connected photovoltaic power system in the tropics: A short term evaluation. Energy Conversion and Management 71:115–19. doi:10.1016/j.enconman.2013.03.030.
  • Khatod, D. K., V. Pant, and J. Sharma. 2010. Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources. IEEE Transactions on Energy Conversion 25 (2):535–45. doi:10.1109/TEC.2009.2033881.
  • King, D. L., Kratochvil, J. A., & Boyson, W. E. (2004). Photovoltaic array performance model.
  • King, D. L., J. A. Kratochvil, and W. E. Boyson. 2004. Photovoltaic array performance model. Online 8 (December):1–19. doi:10.2172/919131.
  • Kosek, A. M., L. Ontje, S. Scherfke, O. Gehrke, and S. Rohjans (2014). Evaluation of smart grid control strategies in co-simulation - integration of IPSYS and mosaik. 2014 Power Systems Computation Conference, (3), 1–7. Wroclaw, Poland.
  • Kumar, N. M. (2017). Simulation tools for technical sizing and analysis of solar PV systems. 6th World Conference on Applied Sciences, Engineering and Technology, (August), 218–22.
  • Kumar, N. M. (2017). Simulation tools for technical sizing and analysis of solar PV systems. In Proceedings of the 6th World Conference on Applied Sciences, Engineering and Technology) (Vol. 201, pp. 218–22 (WCSET-).
  • Kumar, N. M., M. R. Kumar, P. R. Rejoice, and M. Mathew. 2017b. Performance analysis of 100 kWp grid connected Si-poly and Cooling Performance analysis of grid Heating connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia 117:180–89. doi:10.1016/j.egypro.2017.05.121.
  • Lacoste, B. (2009). Kombimodul Solarthermie-Photovoltaik in Polysun. Symposiums Für Thermische Solarenergie Des OTTI, 1–7. Bad Staffelstein, Germany.
  • Lalwani, M., D. P. Kothari, and M. Singh. 2010. Investigation of solar photovoltaic simulation softwares. International Journal of Applied Engineering Research 1 (3):585–601.
  • Linn, J. K. (1977). Photovoltaic System Analysis Program: SOLCEL. Retrieved from https://www.osti.gov/biblio/5358593
  • Lujano-rojas, J. M., R. Dufo-lópez, and J. L. Bernal-agustín. 2013. Probabilistic modelling and analysis of stand-alone hybrid power systems. Energy 63 (2013):19–27. doi:10.1016/j.energy.2013.10.003.
  • Ma, G., G. Xu, Y. Chen, and R. Ju. 2016. Multi-objective optimal configuration method for a standalone wind – Solar – Battery hybrid power system. IET Renewable Power Generation 11 (1):194–202. doi:10.1049/iet-rpg.2016.0646.
  • Madaeni, S. H., P. Denholm, and P. Denholm. 2012. Comparison of capacity value methods for photovoltaics in the Western United States comparison of capacity value methods for photovoltaics in the Western United States.
  • Maleki, A., and A. Askarzadeh. 2014a. Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept. Solar Energy 107 (2014):227–35. doi:10.1016/j.solener.2014.05.016.
  • Maleki, A., and A. Askarzadeh. 2014b. Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region : A case study of Rafsanjan, Iran. Sustainable Energy Technologies and Assessments 7 (2014):147–53. doi:10.1016/j.seta.2014.04.005.
  • Maleki, A., and F. Pourfayaz. 2015. Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms. Solar Energy 115 (2015):471–83. doi:10.1016/j.solener.2015.03.004.
  • Maleki, A., M. Gholipour, and M. Ameri. 2016. Electrical power and energy systems optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty. International Journal of Electrical Power and Energy Systems 83 (2016):514–24. doi:10.1016/j.ijepes.2016.04.008.
  • Maleki, A., M. Gholipour, and M. A. Rosen. 2016. Weather forecasting for optimization of a hybrid solar-wind e powered reverse osmosis water desalination system using a novel optimizer approach. Energy 114 (2016):1120–34. doi:10.1016/j.energy.2016.06.134.
  • Manwell, J. F., J. G. Mcgowan, U. Abdulwahid, and K. Wu (2005). Improvements to the Hybrid2 Battery Model by. American Wind Energy Association Windpower 2005 Conference, USA. (1), 1–22.
  • Mehos, M., and D. Mooney. 2005. Performance and cost model for solar energy technologies in support of the systems-driven approach. Golden: National Renewable Energy Lab.(NREL). No. NREL/CP-550-37085.
  • Menicucci, D. F. (1985). PVFORM: A new approach to photovoltaic system performance modeling. 18th IEEE Photovoltaic Specialists Conference. Las Vegas, US.
  • Menicucci, D. F., and J. P. Fernandez (1989). User`s manual for PVFORM: A photovoltaic system simulation program for stand-alone and grid-interactive applications. Retrieved from https://www.osti.gov/biblio/10112249
  • Mermoud, A. (1995). Use and validation of PVSYST, a user-friendly software for PV-system design. In Thirteenth European Photovoltaic Solar Energy Conference. HS Stephens.
  • Mokheimer, E. M. A., A. Z. Sahin, A. Al-sharafi, and A. I. Ali. 2013. Modeling and optimization of hybrid wind – Solar-powered reverse osmosis water desalination system in Saudi Arabia. Energy Conversion and Management 75 (2013):86–97. doi:10.1016/j.enconman.2013.06.002.
  • Mukhtaruddin, R. N. S. R., H. A. Rahman, M. Y. Hassan, and J. J. Jamian. 2015. Optimal hybrid renewable energy design in autonomous system using Iterative-Pareto-Fuzzy technique. International Journal of Electrical Power and Energy Systems 64 (2015):242–49. doi:10.1016/j.ijepes.2014.07.030.
  • ochacker, M. P. ¨., and W. E. Tamer Khatib (2014). The microgrid simulation tool RAPSim : Description and case study. 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), 278–83.
  • Ogunjuyigbe, A. S. O., T. R. Ayodele, and O. A. Akinola. 2016. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Applied Energy 171 (2016):153–71. doi:10.1016/j.apenergy.2016.03.051.
  • Paliwal, P., N. P. Patidar, and R. K. Nema. 2014. Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization. Renewable Energy 63 (2014):194–204. doi:10.1016/j.renene.2013.09.003.
  • Perez, R., T. Hoff, C. Herig, and J. Shah. 2003. Maximizing PV peak shaving with solar load control : Validation of a web-based economic evaluation tool. Solar Energy 74 (2003):409–15. doi:10.1016/S0038-092X(03)00184-1.
  • Perez, R., R. Reed, and T. Hoff. 2004. Validation of a simplified PV simulation engine. Solar Energy 77(4):357–62. SPEC. ISS. doi:10.1016/j.solener.2004.03.011.
  • Petrana, S., E. A. Setiawan, and A. Januardi (2018). Solar panel performance analysis under Indonesian tropic climate using sandia PV array performance model and five parameter performance model. E3S Web of Conferences, 02048, 1–11. Bali, Indonesia.
  • Quaschning, V., and R. Hanitsch. 1998. Irradiance calculation on shadad surfaces. Solar Energy 62 (5):369–75. doi:10.1016/S0038-092X(98)00018-8.
  • Rajkumar, R. K., V. K. Ramachandaramurthy, B. L. Yong, and D. B. Chia. 2011. Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy. Energy 36 (8):5148–53. doi:10.1016/j.energy.2011.06.017.
  • Rashid Khalifeh Soltani, S., A. Mostafaeipour, K. Almutairi, S. Jalaladdin Hosseini Dehshiri, K. Seyyed Shahabaddin Hosseini Dehshiri, and K. Techato. 2021. Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study. Sustainable Energy Technologies and Assessments 50:101849. doi:10.1016/j.seta.2021.101849.
  • Rezaei, S. H., A. Witzig, and J. M. 2009. Design Methodology for Combined Solar and Geothermal Systems. Estec 1–8.
  • Rezaei, S. H., A. Witzig, M. Pfeiffer, B. Lacoste, and A. W. (2009). Modeling and analyzing solar cooling systems in polysun. 3rd International Conference for Solar Air-Conditioning, 1–7. Palermo, Italy.
  • Rodolfo, D.-L., I. A. R. Crist obal-Monreal, and J. E. M. Yusta. 2016. Stochastic-heuristic methodology for the optimisation of components and control variables of PV-wind-diesel-battery stand-alone systems. Renewable Energy 99 (2016):919–35. doi:10.1016/j.renene.2016.07.069.
  • Ropp, M. E., M. Begovic, A. Rohatgi, and R. Long. 1997. Design considerations for large roof-integrated photovoltaic arrays. Progress in Photovoltaics: Research and Applications 5 (October 1996):55–67. doi:10.1002/(SICI)1099-159X(199701/02)5:1<55::AID-PIP156>3.0.CO;2-2.
  • Saleem, H., and S. Karmalkar. 2009. An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J – V curve. IEEE Electron Device Letters 30 (4):349–52. doi:10.1109/LED.2009.2013882.
  • Salmanoğlu, F., and N. S. Çetin. 2013. The software package for design optimization of the wind/photovoltaic autonomous hybrid power system: A case study for ankara city. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (20):1946–55. doi:10.1080/15567036.2011.572114.
  • Sanajaoba, S., and E. Fernandez. 2016. Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System. Renewable Energy 96 (2016):1–10. doi:10.1016/j.renene.2016.04.069.
  • Sanchez, V. M., A. U. Chavez-ramirez, S. M. Duron-torres, J. Hernandez, L. G. Arriaga, and J. M. Ramirez. 2014. Techno-economical optimization based on swarm intelligence algorithm for a stand-alone wind-photovoltaic-hydrogen power system at south-east region of Mexico. International Journal of Hydrogen Energy 39 (29):16646–55. doi:10.1016/j.ijhydene.2014.06.034.
  • Serrano-Luján, L., C. Toledo, J. M. Colmenar, J. Abad, and A. U. 2022. Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms. Applied Energy 315:119015. doi:10.1016/j.apenergy.2022.119015.
  • Shekoofa, O., J. Wang, Y. Luo, C. Sun, and B. Xiong (2015). PVSIM-GUI, a characterization tool for parameter extraction, modeling and simulation of pv devices. 31st European Photovoltaic Solar Energy Conference and Exhibitation, 2249–52. Hamburg, Germany.
  • Sheng, W., K. Liu, X. Meng, X. Ye, and Y. Liu. 2014. Research and practice on typical modes and optimal allocation method for PV-Wind-ES in Microgrid. Electric Power Systems Research 120 (2014):242–55. doi:10.1016/j.epsr.2014.02.011.
  • Shi, Z., R. Wang, and T. Zhang. 2015. Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach. Solar Energy 118 (2015):96–106. doi:10.1016/j.solener.2015.03.052.
  • Shi, B., W. Wu, and L. Yan. 2016. Size optimization of stand-alone PV/wind/diesel hybrid power generation systems. Journal of the Taiwan Institute of Chemical Engineers (2016):1–9. doi:10.1016/j.jtice.2016.07.047.
  • Silvestre, S., and L. Castan. 2002. Modelling photovoltaic systems using PSpice 1. John Wiley and Sons. Hoboken, New Jersey, United States.
  • Singh, S., M. Singh, and S. Chandra. 2016. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Conversion and Management 128 (2016):178–90. doi:10.1016/j.enconman.2016.09.046.
  • Singh, S., M. Singh, and S. C. Kaushik. 2016. A review on optimization techniques for sizing of solar-wind hybrid energy systems. International Journal of Green Energy 13 (15):1564–78. doi:10.1080/15435075.2016.1207079.
  • Sinha, S., and S. S. Chandel. 2014. Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 32:192–205. doi:10.1016/j.rser.2014.01.035.
  • Sinha, S., and S. S. Chandel. 2015. Review of recent trends in optimization techniques for solar photovoltaic – Wind based hybrid energy systems. Renewable and Sustainable Energy Reviews 50 (2015):755–69. doi:10.1016/j.rser.2015.05.040.
  • Suhane, P., S. Rangnekar, A. Mittal, and A. Khare. 2016. Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation. IET Renewable Power Generation 10 (2016):964–72. doi:10.1049/iet-rpg.2015.0394.
  • Tahani, M., N. Babayan, and A. Pouyaei. 2015. Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study : Tehran. Energy Conversion and Management 106 (2015):644–59. doi:10.1016/j.enconman.2015.10.011.
  • Thula, M., M. N. Kumar, and V. Swetha Reddy. (2017). Simulation and performance analysis of 100kWp solar rooftop using solar pro software. International Conference on Innovations in Power and Advanced Computing Technologies [i-PACT2017] 1–5.
  • Tiba, C., and E. M. D. S. Barbosa. 2002. Softwares for designing, simulating or providing diagnosis of photovoltaic water- pumping systems. Renewable Energy 25 (1):101–13. doi:10.1016/S0960-1481(00)00172-5.
  • Tito, S. R., T. T. Lie, and T. N. Anderson. 2016. Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio-demographic factors. Solar Energy 136 (2016):525–32. doi:10.1016/j.solener.2016.07.036.
  • Turcotte, D., M. Ross, F. Sheriff, L. Blvd, and C. Tel (2001). Photovoltaic hybrid system sizing and simulation tools: Status and needs. PV Horizon: Workshop on Photovoltaic Hybrid Systems, (November), 1–10.
  • Van Dyk, E. E., A. R. Gxasheka, and E. L. Meyer. 2005. Monitoring current–voltage characteristics and energy output of silicon photovoltaic modules. Renewable Energy 30 (3):399–411.
  • Wang, Y., W. Guo, E. Hanna, and G. Colantuono. 2014. Three-dimensional SOlar RAdiation model (SORAM) and its application to 3-D urban planning. Solar Energy 101 (2014):63–73. doi:10.1016/j.solener.2013.12.023.
  • Witzig, A., U. Stöckli, R. B. Patrick Kistler, and M. P. (2010). Polysun Inside : A Universal platform for commercial software and research applications. EuroSun 2010, International Conference on Solar Heating, Cooling and Buildings, (October), 1–8. Graz, Austria.
  • Woertz, H. C. H., and B. B. 1942. The performance of flat-plate solar-heater collectors. Transactions of ASME 64:91–104.
  • Yimen, N., and M. Dagbasi. 2019. Multi-attribute decision-making: Applying a modified Brown–Gibson model and RETScreen software to the optimal location process of utility-scale photovoltaic plants. Processes 5 (505):1–21.
  • Yoo, S. 2011. Simulation for an optimal application of BIPV through parameter variation. Solar Energy 85 (7):1291–301. doi:10.1016/j.solener.2011.03.004.
  • Young, A., and M. Yung. 2001. A PVSS as hard as discrete log and shareholder separability. In International workshop on public key cryptography, 287–99. Berlin Heidelberg: Springer.
  • Youssef, A., M. El-Telbany, and A. Zekry. 2017. The role of artificial intelligence in photo-voltaic systems design and control: A review. Renewable and Sustainable Energy Reviews 78 (November):72–79. doi:10.1016/j.rser.2017.04.046.
  • Zahboune, H., S. Zouggar, G. Krajacic, P. Sabev, M. Elhafyani, and E. Ziani. 2016. Optimal hybrid renewable energy design in autonomous system using modified electric system cascade analysis and homer software loss of power supply probability. Energy Conversion and Management 126 (2016):909–22. doi:10.1016/j.enconman.2016.08.061.
  • Zhao, Z., X. Zhang, Y. Fang, and S. Member. 2015. Stacked multi-layer self-organizing map for background modeling. IEEE Transactions on Image Processing 7149 (c):1–10. doi:10.1109/TIP.2015.2427519.
  • Zhou, T., and W. Sun. 2014. Optimization of battery – supercapacitor hybrid energy storage station in wind/solar generation system. IEEE Transactions on Sustainable Energy 5 (2):408–15. doi:10.1109/TSTE.2013.2288804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.