207
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Study of co-pyrolysis kinetics, synergetic effects, and thermodynamics of coal and biomass blends

, ORCID Icon & ORCID Icon
Pages 7095-7108 | Accepted 21 Jul 2022, Published online: 28 Jul 2022

References

  • https://www.statista.com/statistics/1140236/india-production-volume-of-rice
  • Ahmad, M. S., M. A. Mehmood, O. S. Al Ayed, G. Ye, H. Luo, M. Ibrahim, U. Rashid, I. A. Nehdi, and G. Qadir. 2017. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresource Technology 224:708–13. doi:10.1016/j.biortech.2016.10.090.
  • Ahmad, M. S., M. A. Mehmood, C.-G. Liu, A. Tawab, F.-W. Bai, C. Sakdaronnarong, J. Xu, S. A. Rahimuddin, and M. Gull. 2018. Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresource Technology 253:297–303. doi:10.1016/j.biortech.2018.01.033.
  • Anup Kumar, S., P. Gupta, T. Goyal, and R. Kumar Saha. November 2008. Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis. Bioresource Technology 99(17):8022–26.
  • Bin, T., W. Zhao, Q. Guo, and Y. Tian. A comprehensive understanding of synergetic effect and volatile interaction mechanisms during co-pyrolysis of rice husk and different rank coals. Energy 254(Part B):1 September 2022 124388. doi:10.1016/j.energy.2022.124388.
  • BP. 2017. Statistical Review of World Energy 2017.
  • Burhenne, L., J. Messmer, T. Aicher, and M.-P. Laborie. 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis 101:177–84. doi:10.1016/j.jaap.2013.01.012.
  • Chen, C. X., X. Q. Ma, and Y. He. 2012. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technology 117:264–73. doi:10.1016/j.biortech.2012.04.077.
  • Chen, J., Y. Wang, X. Lang, X. Ren, and S. Fan, et al. 2017. Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics. Bioresource Technology 241. doi:10.1016/j.biortech.2017.05.036.
  • Collard, F.-X., and J. Blin. 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 38:594–608. doi:10.1016/j.rser.2014.06.013.
  • Collot, A. G., Y. Zhuo, D. R. Dugwell, and R. Kandiyoti. 1999. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors. Fuel 78 (6):667–79. doi:10.1016/S0016-2361(98)00202-6.
  • Dong Kyoo, P., S. Done Kim, S. Hoon Lee, and J. Goo Lee. August 2010. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology 101(15):6151–56. doi:10.1016/j.biortech.2010.02.087.
  • Hasan Rony, A., L. Kong, L. Wenyang, M. Dejam, H. Adidharma, K. A. M. Gasema, Y. Zhengd, U. Norton, and M. Fana. 2019. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresource Technology 284:466–73. doi:10.1016/j.biortech.2019.03.049.
  • Huang, Y.-F., P.-T. Chiueh, W.-H. Kuan, and S.-L. Lo. 2016. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics. Energy 100:137–44. doi:10.1016/J.ENERGY.2016.01.088.
  • Kastanaki, E., D. Vamvuka, P. Grammelis, and E. Kakaras. 2002. Thermogravimetric method of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology 77–78:159–66. doi:10.1016/S0378-3820(02)00049-8.
  • Ke-Miao, L., W.-J. Lee, W.-H. Chen, and T.-C. Lin May 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Applied Energy 105:57–65. doi:10.1016/j.apenergy.2012.12.050.
  • Kenney, K. L., W. A. Smith, G. L. Gresham, and T. L. Westover. 2013. Understanding biomass feedstock variability. Biofuels 4 (1):111–27. doi:10.4155/bfs.12.83.
  • Kirtania, K., and S. Bhattacharya. 2013. Pyrolysis kinetics and reactivity of algae-coal blends. Biomass & Bioenergy 55:291–98. doi:10.1016/j.biombioe.2013.02.019.
  • Kissinger, H. 1956. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards 7 (4):217–21. doi:10.6028/jres.057.026.
  • Li, S., X. Chen, L. Wang, A. Liu, and G. Yu. 2013. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor, Bioresour. Technol 148:24–29. doi:10.1016/j.biortech.2013.08.126.
  • Li, H., S. Niu, C. Lu, and Y. Wang. 2015a. Comprehensive investigation of the thermal degradation characteristics of biodiesel and its feedstock oil through TGA–FTIR. Energy & Fuels: an American Chemical Society Journal 29 (8):5145–53. doi:10.1021/acs.energyfuels.5b01054.
  • Li, H., S. L. Niu, C. M. Lu, and S. Q. Cheng. 2015b. Comparative evaluation of thermal degradation for biodiesels derived from various feedstocks through transesterification. Energy Conversation Management 98:81–88. doi:10.1016/j.enconman.2015.03.097.
  • Mallick, D., M. K. Poddar, P. Mahanta, and V. S. Moholkar. 2018. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Technology 261:294–305. doi:10.1016/j.biortech.2018.04.011.
  • Manzano-Agugliaro, F., A. Alcayde, F. Montoya, A. Zapata-Sierra, and C. Gil. 2013. Scientific production of renewable energies worldwide: An overview. Renewable and Sustainable Energy Reviews 18:134–43. doi:10.1016/j.rser.2012.10.020.
  • Masnadi, M. S., R. Habibi, J. Kopyscinski, J. M. Hill, X. Bi, C. J. Lim, N. Ellis, and J. R. Grace. 2014. Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel 117:1204–14. doi:10.1016/j.fuel.2013.02.006.
  • Mohd, M., S. Gupta, and D. Santanu. 2021. Investigation of co-pyrolysis characteristics of high-ash Indian coal and rice husk. IOP Conference Series: Materials Science and Engineering 1146: 012014.
  • Munmi, B., K. Prasad Shadangi, P. Mahanta, and K. Mohanty. 2021. Co-pyrolysis of coal-biomass: Study on reaction kinetics and thermodynamics. Biofules, Bioproducts and Biorefinery. doi:10.1002/bbb.2333.
  • Ozawa, T. 1970. Kinetic analysis of derivative curves in thermal analysis. Journal of Thermochimica Acta 2 (3):301–24. doi:10.1007/BF01911411.
  • Prabhakar, A., A. Kumar Sadhukhan, R. Mallick, and P. Gupta. 2019. Study of pyrolysis kinetics and characterization using TG-FTIR, GC, and BET using high ash Indian sub-bituminous coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1704311.
  • Pratap, S., S. Rajnish Kumar, P. V. Gokul, H. Shabih-Ul, and N. Sawarkar Ashish. 2020. Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1736215.
  • Radojević, M., B. Janković, V. Jovanović, D. Stojiljković, N. Manić, and M. Bäbler. 2018. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLOS ONE 13 (10):e0206657. doi:10.1371/journal.
  • Reddy, B. R., and R. Vinu September 2018. Microwave-assisted co-pyrolysis of high ash indian coal and rice husk: product characterization and evidence of interactions. Fuel Processing Technology 178:41–52. doi:10.1016/j.fuproc.2018.04.018.
  • Shi, L., Q. Liu, X. Guo, W. Weize, and Z. Liu April 2013. Pyrolysis behavior and bonding information of coal — A TGA study. Fuel Processing Technology 108:125–32. doi:10.1016/j.fuproc.2012.06.023.
  • Shuaidan, L., X. Chen, L. Wang, A. Liu, and Y. Guangsuo November 2013. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor. Bioresource Technology 148:24–29. doi:10.1016/j.biortech.2013.08.126.
  • Shuaidan, L., X. Chen, A. Liu, L. Wang, and Y. Guangsuo March 2014. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor. Bioresource Technology 155:252–57. doi:10.1016/j.biortech.2013.12.119.
  • Soncini, R. M., N. C. Means, and N. T. Weiland October 2013. Co-pyrolysis of low rank coals and biomass: Product distributions. Fuel 112:74–82. doi:10.1016/j.fuel.2013.04.073.
  • Starink, M. J. 4 September 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of iso-conversion methods. Thermochimica Acta 404(1–2):163–76.
  • Starnik, M. J. 1996. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica Acta 288 (1–2):97–104. doi:10.1016/S0040-6031(96)03053-5.
  • Supachita, K., C. Fushimi, A. Tsutsumi, and P. Kuchonthara November 2013. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal. Fuel Processing Technology 115:11–18. doi:10.1016/j.fuproc.2013.03.044.
  • Taro, S., N. Worasuwannarak, and S. Pipatmanomai. December 2008. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Processing Technology 89(12):1371–78. doi:10.1016/j.fuproc.2008.06.006.
  • Ulloa, C. A., A. L. Gordon, and G. X.a. April 2009. Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Processing Technology 90(4):583–90. doi:10.1016/j.fuproc.2008.12.015.
  • Vlaev, L., V. Georgieva, and S. Genieva. 2007. Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds. Journal of Thermal Analysis and Calorimetry 88:805–12. doi:10.1007/s10973-005-7149-y.
  • Vyazovkin, S. 2001. Modification of the integral isoconversional method to account for variation in the activation energy. The Journal of Computational Chemistry 22:178–83.
  • Wang, S., Q. Wang, Y. M. Hu, S. N. Xu, Z. X. He, and H. S. Ji. 2015. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique. Journal of Analytical and Applied Pyrolysis 114:109–18. doi:10.1016/j.jaap.2015.05.008.
  • Wu, Z., W. Yang, Y. Li, B. Zhang, and B. Yang. 2018b. On-line analysis on the interaction between organic compounds from co-pyrolysis of microalgae and low-rank coal: Thermal behavior and kinetic characteristics. Bioresource Technology 268:672–76.
  • Wu, Z., W. Yang, and B. Yang. 2018c. Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: Effects of nannochloropsis and chlorella. Bioresource Technology 249:501–09. doi:10.1016/j.biortech.2017.09.196.
  • Xu, Y., and B. Chen. 2013. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource Technology 146:485–93. doi:10.1016/j.biortech.2013.07.086.
  • Yan, L., Y. Guo Wei Gao, Z. Wang, M. Yuejia, Z. Wang, and Z. Wang. 2012. Simultaneous preparation of silica and activated carbon from rice husk ash. Journal of Cleaner Production 32:204–09. doi:10.1016/j.jclepro.2012.03.021.
  • Yan, L., Y. Cao, H. Zhou, and B. He. 2018a. Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory Vol. 269. Bioresource Technology. doi:10.1016/j.biortech.2018.08.099.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. August 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Zhang, L., S. Xu, W. Zhao, and S. Liu. 2006. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel. doi:10.1016/j.fuel.2006.07.004.
  • Zhao, S., P. Yang, X. Liu, Q. Zhang, and H. Jianjun. 2020. Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification. Bioresource Technology 302:122876. doi:10.1016/j.biortech.2020.122876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.