209
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Spontaneous combustion characteristics and mechanism of water-immersed and air-dried brown coal

, , , , , & show all
Pages 7413-7431 | Received 09 Jun 2022, Accepted 02 Aug 2022, Published online: 17 Aug 2022

References

  • Ahmad, M. S., M. S. Ali, and N. A. Rahim. 2021. Hydrogen energy vision 2060: Hydrogen as energy carrier in Malaysian primary energy mix-Developing P2G case. Energy Strategy Reviews 35:100632. doi:10.1016/j.esr.2021.100632.
  • Arisoy, A., B. Beamish, and B. Yoruk. 2017. Moisture moderation during coal self-heating. Fuel 210:352–58. doi:10.1016/j.fuel.2017.08.075.
  • Basil, B. B., and A. Arisoy. 2008. Effect of mineral matter on coal self-heating rate. Fuel 87 (1):125–30. doi:10.1016/j.fuel.2007.03.049.
  • Bu, Y. C., Y. L. Xu, Z. J. Liu, Z. G. Lu, and Z. Liu. 2021. Effects of soaking and air-drying on the oxidation and combustion laws of long flame coal. Journal of Nanjing Tech University (Natural Science Edition) 43 (2):238–46.
  • Cheng, Z. L., Z. T. Tan, Z. G. Guo, J. Yang, and Q. W. Wang. 2020. Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry. Renewable and Sustainable Energy Reviews 131:1364–0321. doi:10.1016/j.rser.2020.110034.
  • Clemens, H., A. T. W. Matheson, and D. E. Rogers. 1991. Low temperature oxidation studies of dried New Zealand coals. Fuel 70 (2):215–21. doi:10.1016/0016-2361(91)90155-4.
  • Danish, E., and M. Onder. 2020. Application of fuzzy logic for predicting of mine fire in underground coal mine. Safety and Health at Work 11 (3):322–34. doi:10.1016/j.shaw.2020.06.005.
  • Deng, J., J. Y. Zhao, and Y. N. Zhang. 2014. Study on determination of coal spontaneous combustion characteristic temperature based on analysis method of index gas growth-rate. Coal Science and Technology 42 (7):49–52+56.
  • Guo, T. H., and X. L. Fan. 2012. Hydrogeological characteristics and water inrush analysis of the first mining face in ningxia hongliu coal mine. Coal Geology of China 5 (24):31–34.
  • Han, F., Y. G. Zhang, A. H. Meng, and Q. H. Li. 2014. FTIR analysis of yunnan lignite structure. Journal of China Coal Society 39 (11):2293–99.
  • Jiao, X. M., D. M. Wang, X. X. Zhong, J. S. Li, and D. Lei. 2012. Analysis of influencing factors of coal spontaneous combustion critical temperature based on CO concentration. Safety in Coal Mines 43 (3):11–15.
  • Li, J. H., Z. H. Li, Y. L. Yang, Y. J. Duan, J. Xu, and R. T. Gao. 2019. Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures. Energy 185:28–38. doi:10.1016/j.energy.2019.07.041.
  • Li, S., G. H. Ni, H. Wang, M. Xun, and Y. H. Xu. 2020. Effects of acid solution of different components on the pore structure and mechanical properties of coal. Advanced Powder Technology 31 (4):1736–47. doi:10.1016/j.apt.2020.02.009.
  • Liu, L. 2021. Study on the migration law of high temperature point of spontaneous combustion oxidation of coal in goaf. Xi’an University of Science and Technology (2): 11–12. doi:10.27397/d.cnki.gxaku.2021.000463.
  • Lu, X., J. Deng, Y. Xiao, X. W. Zhai, C. P. Wang, and X. Yi. 2022. Recent progress and perspective on thermal-kinetic, heat and mass transportation of coal spontaneous combustion hazard. Fuel 308:0016–2361.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305:121626. doi:10.1016/j.fuel.2021.121626.
  • Mosorov, V. 2017. The Lambert-Beer law in time domain form and its application. Applied Radiation and Isotopes 128:1–5. doi:10.1016/j.apradiso.2017.06.039.
  • Niu, H. Y., Y. K. Liu, K. Wu, J. P. Wu, S. L. Li, and H. Y. Wang. 2022. Study on Pore Structure Change Characteristics of Water-Immersed and Air-Dried Coal Based on SEM-BET. Combustion Science and Technology,1–23 doi:10.1080/00102202.2022.2054272.
  • Qu, Z. B., F. Sun, J. H. Gao, T. Pei, Z. P. Qie, L. J. Wang, X. X. Pi, G. B. Zhao, and S. H. Wu. 2019. A new insight into the role of coal adsorbed water in low-temperature oxidation: Enhanced ·OH radical generation. Combustion and Flame 208:27–36. doi:10.1016/j.combustflame.2019.06.017.
  • Reich, M. H., I. K. Snook, and H. K. Wagenfeld. 1992. A fractal interpretation of the effect of drying on the pore structure of Victorian brown coal. Fuel 71 (6):669–72. doi:10.1016/0016-2361(92)90170-S.
  • Song, Y. W. 2020. Adsorption after soaking and drying and spontaneous combustion characteristics in methane atmosphere. China University of Mining and Technology.
  • Song, S., B. T. Qin, H. H. Xin, X. W. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Tang, Y. B. 2015. The influences of manganese and phosphorus on the low-temperature oxidation of coal. International Journal of Coal Preparation and Utilization 32 (2):63–72. doi:10.1080/19392699.2014.964867.
  • Tang, Y. B., Y. F. Li, S. Xue, J. F. Wang, and R. C. Li. 2017. Experimental investigation of long-term water immersion effect on spontaneous combustion parameters and microscopic characteristics of bituminous. Journal of China Coal Society 42 (10):2642–48.
  • Tang, Y. B., and S. Xue. 2017. Influence of long-term water immersion on spontaneous combustion characteristics of Bulianta bituminous coal. International Journal of Oil, Gas and Coal Technology 14 (4):398–411. doi:10.1504/IJOGCT.2017.083065.
  • Wang, D. M. 2012. The Coal Oxidation Dynamics: Theory and Application, Vol. 18, 110–13. Beijing: Science Press.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science 29 (6):487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, K., T. Han, J. Deng, and Y. Zhang. 2022. Comparison of combustion characteristics and kinetics of jurassic and carboniferous-Permian coals in China. Energy 254 (PB):124315. doi:10.1016/j.energy.2022.124315.
  • Wang, F. S., C. Sun, X. W. Dong, and L. Q. Zhu. 2017. Analysis of microstructure of coal effect on spontaneous combustion tendency. Coal Technology 36 (12):139–41.
  • Wang, D. M. H., H. Xin, X. Y. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combustion and Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Xiao, Y., L. Ma, Z. P. Wang, J. Deng, W. Wang, and X. Xiang. 2007. The characteristic temperature of coal spontaneous combustion process studied by thermogravimetric analysis. Coal Science and Technology 05:73–76.
  • Xu, J. 2001. Determination theory of coal spontaneous combustion zone. Beijing (PRChina): China Coal Industry Publishing House.
  • Xu, J. C. 2001. Coal spontaneous combustion danger zone determination theory. Coal Industry Press 11–12.
  • Xu, F., J. C. Jiang, K. Sun, and X. M. Li. 2013. Study on spontaneous combustion tendency of activated carbon based on activation energy index. Coal Conversion 36 (3):84–87.
  • Yan, J. 2016. Evaluation of water abundance of aquifer in the lower zhiluo formation of hongliu coal mine in ningxia. Coal Geology of China 3 (28):46–49.
  • Zhai, W., H. Ge, T. Y. Wang, C. M. Shu, and J. Li. 2020. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy 205:118076. doi:10.1016/j.energy.2020.118076.
  • Zhang, F. 2020. Variation of spontaneous combustion limit parameters of residual coal in composite goaf and determination of dangerous area. Mining Safety & Environmental Protection 47 (4):66–72.
  • Zhang, Y. N., Y. C. Hou, J. Y. Zhao, J. Deng, X. Y. Wen, C. H. Liu, A. P. Wang, and P. Shu. 2021. Heat release characteristic of key functional groups during low-temperature oxidation of coal. Combustion Science and Technology 193 (15):2692–703. doi:10.1080/00102202.2020.1755970.
  • Zhang, Y. H., M. Lebedev, M. Sarmadivaleh, A. Barifcani, T. Rahman, and S. Iglauer. 2016. Swelling effect on coal micro structure and associated permeability reduction. Fuel 182:568–76. doi:10.1016/j.fuel.2016.06.026.
  • Zhang, Y., X. Q. Zhang, W. Yang, H. H. Xin, S. R. Hu, and Y. Song. 2020. Pore structure and its impact on susceptibility to coal spontaneous combustion based on multiscale and multifractal analysis. Scientific Reports 10 (1):1–15. doi:10.1038/s41598-019-56847-4.
  • Zhao, J. Y., J. Deng, L. Chen, T. Wang, J. J. Song, Y. N. Zhang, C. M. Shu, and Q. Zeng. 2019. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. Energy 181:136–47. doi:10.1016/j.energy.2019.05.158.
  • Zhao, B. C., H. Sun, Y. X. Guo, and X. Yang. 2021. Study on dynamic evolution law of water flowing fracture in thick loose layer near shallow coal seam mining. Coal Engineering 53 (10):100–05.
  • Zhao, J. W., W. C. Wang, P. F, J. L. Wang, F. Gao, and P. F. Xue. 2022. Experimental study on the influence of water immersion and air-drying process on coal spontaneous combustion characteristics. Coal Mine Safety 06:37–43.
  • Zhao, J. W., W. C. Wang, P. Fu, J. L. Wang, and F. Gao. 2021b. Evaluation of the spontaneous combustion of soaked coal based on a temperature-programmed test system and in-situ FTIR. Fuel 294:120583. doi:10.1016/j.fuel.2021.120583.
  • Zhao, J. Y., Y. L. Zhang, J. Deng, J. J. Song, T. Wang, Y. N. Zhang, and Y. X. Zhang. 2020. Main active functional groups affecting the release of coal spontaneous combustion gas products. Chinese Journal of Engineering 42 (9):1140–48.
  • Zheng, K. Y., Y. L. Yang, G. D. Miao, and P. R. Li. 2020. Influence mechanism of soaking process on spontaneous combustion characteristics of residual coal in goaf. Journal of Combustion Science and Technology 10 (27):666–74.
  • Zhou, B. Z., S. Q. Yang, C. J. Wang, X. C. Hu, W. X. Song, J. W. Cai, Q. Xu, and N. W. Sang. 2020. The characterization of free radical reaction in coal low-temperature oxidation with different oxygen concentration. Fuel 262:116524. doi:10.1016/j.fuel.2019.116524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.