158
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Drying Kinetics and Performance Analysis of Indirect Solar Dryer Integrated with Thermal Energy Storage Material for Drying of Wheat Seeds: An Experimental Approach

ORCID Icon, &
Pages 7967-7985 | Received 25 May 2022, Accepted 23 Aug 2022, Published online: 01 Sep 2022

References

  • Aghbashlo, M., M. H. Kianmehr, and A. Arabhosseini. 2009. Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Conversion and Management 50:1348–55.
  • Ahmad, A., O. Prakash, and A. Kumar. 2021. Drying kinetics and economic analysis of bitter gourd flakes drying inside hybrid greenhouse dryer. Environmental Science and Pollution Research. doi:10.1007/s11356-021-17044-x.
  • Akpinar, E. K. 2010. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Conversion and Management 51 (12):2407–18. doi:10.1016/j.enconman.2010.05.005.
  • Álvarez, G., E. SimaL and L. Lira, Chapter 241 - Thermal Performance of an Indirect Solar Dryer, World Renewable Energy Congress VI (Renewables: The Energy for the 21st Century World Renewable Energy Congress VI 1–7 July 2000 Brighton, UK), pp. 1165–69, 2000.
  • Atalay, H., M. Ç. Turhan and O. Kıncay, Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system, Energy, vol. 134, pp. 382–91, 2017. 10.1016/j.energy.2017.06.030
  • Bal, L. M., S. Satya, S. N. Naik, and V. Meda. 2011. Review of solar dryers with latent heat storage systems for agricultural products. Renewable and Sustainable Energy Reviews 15:876–80.
  • Benhamza, A., A. Boubekri, A. Atia, T. Hadibi and M. Arıcı, Drying uniformity analysis of an indirect solar dryer based on computational fluid dynamics and image processing, Sustainable Energy Technologies and Assessments, vol. 47, p. 101466, 2021. 10.1016/j.seta.2021.101466
  • Bhardwaj, A. K., R. Chauhan, R. Kumar, M. Sethi and A. Rana, “Experimental investigation of an indirect solar dryer integrated with phase change material for drying valeriana jatamansi (medicinal herb),” Case Studies in Thermal Engineering, vol. 10, p. 302–14, 2017. 10.1016/j.csite.2017.07.009
  • Bhardwaj, A. K., R. Kumar, S. Kumar, B. Goel and R. Chauhan, “Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM,” Sustainable Energy Technologies and Assessments, vol. 45, p. 101119, 2021. 10.1016/j.seta.2021.101119
  • Brooker, D. B. 1967. Mathematical model of the psychometric chart. TRANSACTIONS of the ASAE 558–60.
  • Chaatouf, D., M. Salhi, B. Raillani, S. Amraqui and A. Mezrhab, “Assessment of a heat storage system within an indirect solar dryer to improve the efficiency and the dynamic behavior,” Journal of Energy Storage, vol. 41, p. 102874, 2021. 10.1016/j.est.2021.102874
  • Chhinnan, M. S. 1984. Evaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Transactions - American Society of Agricultural Engineers 27:610–15.
  • Dhande, H. K., S. D. Shelare, and P. B. Khope. 2020. Developing a mixed solar drier for improved postharvest handling of food grains. Agricultural Engineering International: CIGR Journal 22 (4):166–73.
  • Diamante, L. M., and P. A. Munro. 1991. Mathematical modeling of hot air drying of sweet potato slices. International Journal of Food Science Technology 26:91–99.
  • Doymaz, I. 2007. Air-Drying characteristics of tomatoes. Journal of Food Engineeing 78 (4):1291–97.
  • El-Sebaii, A. A., S. Aboul-Enein, M. R. I. Ramadan, and H. G. El-Gohary. 2002. Experimental investigation of an indirect type natural convection solar dryer. Energy Conversion and Management 43 (16):2251–66. doi:10.1016/S0196-8904(01)00152-2.
  • El-Sebaii, A., and S. Shalaby. 2012. Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews 16 (1):37–43. doi:10.1016/j.rser.2011.07.134.
  • Essalhi, H., M. Benchrif, R. Tadili and M. N. Bargach, “Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun,” Innovative Food Science & Emerging Technologies, vol. 49, pp. 58–64, 2018. 10.1016/j.ifset.2018.08.002
  • Fath, H. E. S. 1995. Thermal performance of a simple design solar air heater with built-in thermal energy storage system. Energy Conversion and Management 36:989–97.
  • Hanif, S., M. Sultan, T. Miyazaki, and S. Koyama. 2019. Investigation of energy-efficient solid desiccant system for wheat drying. International Journal of Agricultural and Biological Engineering 12 (1):221–28. doi:10.25165/j.ijabe.20191201.3854.
  • Hawa, L. C., U. Ubaidillah, S. A. Mardiyani, A. N. Laily, N. I. W. Yosika, and F. N. Afifah. 2021. Drying kinetics of cabya (Piper retrofractum Vahl) fruit as affected by hot water blanching under indirect forced convection solar dryer. Solar Energy 214:588–98.
  • Henderson, S. M. 1974. Progress in developing the thin layer drying equation. Transaction in American Society of Agriculture Engineering 17:1167–68.
  • Hosain, M., R. Haque, M. N. Islam, H. Khatun, and M. Shams-Ud-Din. 2016. Effect of temperature and loading density on drying kinetics of wheat. Journal of Experimental Biology and Agricultural Sciences 4 (2):210–17. doi:10.18006/2016.4(2).210.217.
  • Iranmanesh, M., H. S. Akhijahani, and M. S. B. Jahromia. 2020. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy 145:1192–213.
  • Ismaeel, H. H. and R. Yumrutaş, “Investigation of a solar assisted heat pump wheat drying system with underground thermal energy storage tank,” Solar Energy, vol. 199, pp. 538–51, 2020. 10.1016/j.solener.2020.02.022
  • Jain, D. and P. Tewari, “Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage,” Renewable Energy, vol. 80, pp. 244–50, 2015. 10.1016/j.renene.2015.02.012
  • Kabir, E., P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim. 2018. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 82:894–900.
  • Karathanos, V. T. 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering 39:337–44.
  • Kassem, A. S., Comparative studies on thin layer drying models for wheat, in 13th international congress on agricultural engineering, Morocco, February 1998.
  • Khadraoui, A. E., S. Bouadila, S. Kooli, A. Farhat and A. Guizani, Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM, Journal of Cleaner Production, vol. 148, pp. 37–48, 2017. 10.1016/j.jclepro.2017.01.149
  • Koua, K. B., W. F. Fassinou, P. Gbaha, and S. Toure. 2009. Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy 34 (10):1594–602. doi:10.1016/j.energy.2009.07.005.
  • Koua, B. K., P. M. E. Koffi, and P. Gbaha. 2019. Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences 18 (1):72–82.
  • Kumar, M., S. K. Sansaniwal and P. Khatak, Progress in solar dryers for drying various commodities, Renewable and Sustainable Energy Reviews, vol. 55, pp. 346–60, 2016. 10.1016/j.rser.2015.10.158
  • Kumar, P. and D. Singh, Advanced technologies and performance investigations of solar dryers: A review, Renewable Energy Focus, vol. 35, pp. 148–58, 2020. 10.1016/j.ref.2020.10.003
  • Kumar, V. N., M. Venkatasudhahar, P. M. Kumar, A. Ramesh and R. Subbiah, Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM), Materials Today: Proceedings, 2021.
  • Lara, M. A., A. Cortes, R. Gaspar, and R. D. Piacetini. 1986. Solar grain drying in humid and hot-temperate climates. Drying Technology: An International Journal 4 (3):415–38. doi:10.1080/07373938608916337.
  • Lewis, W. K. 1921. The rate of drying of solid materials. The Journal of Industrial and Engineering Chemistry 13 (5):427–33. doi:10.1021/ie50137a021.
  • Lingayat, A., V. Chandramohan and V. R. K. Raju, Design, development, and performance of indirect type solar dryer for banana drying, Energy procedia (International conference on recent advancement in air conditioning and refrigeration), vol. 109, pp. 409–16, 2017.
  • Madhlopa, A., and G. Ngwalo. 2007. Solar dryer with thermal storage and biomass-backup heater. Solar Energy 81:449–62.
  • Mall, P., and D. Singh. 2017. Advanced technologies and experimental investigations in solar dryers: A Review. Indian Journal of Scientific Research 17 (2):145–50.
  • Mall, P., and D. Singh. 2018. Comparative Study of Performance of Indirect Mode with PCM and Mixed Mode Solar Dryer for Coriander Leaves. International Journal of Applied Engineering Research 13 (8):5909–19.
  • Midilli, A., H. Kucuk, and Z. Yapar. 2002. A new model for single layer drying. Drying Technology 20:1503–13.
  • Mugi, V. R. and V. P. Chandramohan, “Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection,” Thermal Science and Engineering Progress, vol. 24, p. 100950, 2021. 10.1016/j.tsep.2021.100950
  • Nazghelichi, T., M. Aghbashlo, and M. H. Kianmehr. 2011. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture 75 (1):84–91. doi:10.1016/j.compag.2010.09.014.
  • Niaz, H., M. M. Lakouraj, and J. Liu. 2021. Techno-Economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: A Korean case study. The Korean Journal of Chemical Engineering 38:1617–30.
  • Özyürek, M., M. Bener, K. Güçlü and R. Apak, Antioxidant/antiradical properties of microwave-assisted extracts of three wild edible mushrooms, Food Chemistry, vol. 157, pp. 323–31, 2014. 10.1016/j.foodchem.2014.02.053
  • Page, G. E., “Factors influencing the maximum rates of air drying shelled corn in thin layers,” Unpublished master thesis, Purdue University, Lafayette USA, 1949.
  • Rabha, D. K., P. Muthukumar and C. Somayaji, “Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer,” Renewable Energy, vol. 105, pp. 583–89, 2017. 10.1016/j.renene.2016.12.091
  • Rafiee, S., A. Keyhani, and A. Jafari. 2008. MODELING EFFECTIVE MOISTURE DIFFUSIVITY of WHEAT (TAJAN) DURING AIR DRYING. International Journal of Food Properties 11:223–32.
  • Ramaj, I., S. Schock, and J. Müller. 2021. Drying Kinetics of Wheat (Triticum aestivum L., cv. ‘Pionier’) during Thin-Layer Drying at Low Temperatures. Applied Sciences 11:9557.
  • Sacilik, K., R. Keskin, and A. K. Elicin. 2006. Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering 73 (3):231–38. doi:10.1016/j.jfoodeng.2005.01.025.
  • Sekhar, Y. R., A. K. Pandey, I. M. Mahbubul, G. R. S. Avinash, V. Venkat and N. R. Pochont, “Experimental study on drying kinetics for Zingiber Officinale using solar tunnel dryer with thermal energy storage,” Solar Energy, Available online 12 August 2021.
  • Seshachalam, K., A. T. Velliangiri, and V. Selvaraj. 2017. Drying of carrot slices in a triple pass solar dryer. Thermal Science 21 (2):389–98.
  • Shalaby, S. M. and M. A. Bek, “Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium,” Energy Conversion and Management, vol. 83, p. 1–8, 2014. 10.1016/j.enconman.2014.03.043
  • Sharaf-Elden, Y. I., J. L. Blaisdell, and M. Y. Hamdy. 1980. A model for ear corn drying. Transactions - American Society of Agricultural Engineers 5:1261–65.
  • Sharma, V. K., A. Colangelo, and G. Spagna. 1993. EXPERIMENTAL PERFORMANCE of an INDIRECT TYPE SOLAR FRUIT and VEGETABLE DRYER. Energy Conversion and Management 34 (4):293–308. doi:10.1016/0196-8904(93)90114-P.
  • Singh, D., and P. Mall. 2020. Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.
  • Sukhatme, S. P., and J. K. Nayak. 2017. Solar Energy. 4th ed. India: Mc Graw Hill.
  • Tiwari, G. N., A. Tiwari. Handbook of Solar Energy: Theory, Analysis and Applications, Springer Singapore, 2016, p. 177.
  • Tiwari, S., and G. N. Tiwari. 2017. Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector. Solar Energy 128:183–95.
  • Torki-Harchegani, M., D. Ghanbarian, A. G. Pirbalouti and M. Sadeghi, “Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 407–18, 2016. 10.1016/j.rser.2015.12.078
  • Tunde-Akintunde, T. Y. 2011. Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy 36 (8):2139–45. doi:10.1016/j.renene.2011.01.017.
  • Verma, L. R., R. A. Bucklin, J. B. Endan, and F. T. Wratten. 1985. Effects of drying air parameters on rice drying models. Transactions - American Society of Agricultural Engineers 28:296–301.
  • Vijayan, S., T. V. Arjunan and A. Kumar, Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer, Innovative Food Science and Emerging Technologies, vol. 36, pp. 59–67, 2016. 10.1016/j.ifset.2016.05.014
  • Wang, G. Y., and R. P. Singh. 1978. A single layer drying equation for rough rice. American Society of Agricultural Engineers, Paper No 78-3001.
  • Wang, J., Y. S. Xiong, and Y. Yu. 2004. Microwave drying characteristics of potato and the effect of different microwave powers on the dried quality of potato. European Food Research and Technology 219 (5):500–06.
  • White, G. M., I. J. Ross, and C. J. Poneleit. 1981. Fully exposed drying of popcorn. Transactions - American Society of Agricultural Engineers 24:466–68.
  • Yağcıoğlu, A., A. Değirmencioğlu and F. Çağatay, Drying characteristics of laure leaves under different conditions, in 7th International Congress on Agricultural Mechanization and Energy, Adana, Turkey, 26 - 27 May 1999.
  • Zare, D., S. Minaei, M. Mohamad Zadeh, and M. H. Khoshtaghaza. 2006. Computer simulation of rough rice drying in a batch dryer. Energy Conversion and Management 47 (18–19):3241–54. doi:10.1016/j.enconman.2006.02.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.