107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel thermal conductivity-mixing ratio-temperature mathematic model for forecasting the thermal conductivity of biodiesel-diesel-ethanol blended fuel

ORCID Icon, , , , , & show all
Pages 8235-8246 | Received 22 Mar 2022, Accepted 24 Aug 2022, Published online: 07 Sep 2022

References

  • Alviso, D., F. Krauch, R. Román, H. Maldonado, R. G. D. Santos, J. C. Rolón, and N. Darabiha. 2017. Development of a diesel-biodiesel-ethanol combined chemical scheme and analysis of reactions pathways. Fuel 191:411–26. doi:10.1016/j.fuel.2016.11.039.
  • Chao, W. W., Z. Y. Ling, L. F. She, and L. Ying. 2020. Application and analysis of rapid determination of oxidative degradation of biodiesel by surface tension and UV absorbance. Renewable Energy 152:1431–38. doi:10.1016/j.renene.2020.01.082.
  • Chen, Z. S., T. Fujii, M. Fujii, and X. S. Ge. 1989. Investigation on predicting thermal conductivity of mixtures of orgainc liquid. Journal of Engineering Thermophysics 10:418–21.
  • Cui, W., Z. H. Cao, X. Y. Li, L. Lu, T. Ma, and Q. W. Wang. 2021. Experimental investigation and artificial intelligent estimation of thermal conductivity of nanofluids with different nanoparticles shapes. Powder Technology 398:117078. doi:10.1016/j.powtec.2021.117078.
  • Fan, J., B. Cui, S. S. Liu, F. H. Song, and X. P. Wang. 2019. Experimental studies on the thermal conductivity of methyl laurate component of biodiesel with three alcohols. The Journal of Chemical Thermodynamics 139:105881. doi:10.1016/j.jct.2019.105881.
  • Fan, J., L. L. Fan, S. S. Liu, and F. H. Song. 2021. Experimental research on the liquid thermal conductivity of mixtures of methyl caprate and ethyl caprate with n-undecane and n-tridecane. Journal of Molecular Liquids 333:115968. doi:10.1016/j.molliq.2021.115968.
  • Fan, J., Q. Liu, F. H. Song, X. P. Wang, and L. H. Zhang. 2018. Experimental investigations on the liquid thermal conductivity of five saturated fatty acid methyl esters components of biodiesel. The Journal of Chemical Thermodynamics 125:50–55. doi:10.1016/j.jct.2018.05.019.
  • Fan, J., H. Mu, C. Gao, and F. H. Song. 2021. High pressure thermal conductivity of three ethyl esters in the liquid phase. Case Studies in Thermal Engineering 27:101235. doi:10.1016/j.csite.2021.101235.
  • Garai, A., S. Mondal, and S. Pal, S. Chatterjee, S. Sen, A. Mukhopadhyay. 2019. Experimental investigation of spray formation in a hybrid atomizer using diesel, ethanol and ethanol blended diesel. Experimental Thermal and Fluid Science 100:158–70. doi:10.1016/j.expthermflusci.2018.09.003.
  • Hu, X. M., J. R. Ma, J. Ying, M. Cai, and Y. Q. Kong. 2021. Inferring future warming in the Arctic from the observed global warming trend and CMIP6 simulations. Advances in Climate Change Research 12 (4):499–507. doi:10.1016/j.accre.2021.04.002.
  • Hulwan, D. B., and S. V. Joshi. 2011. Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content. Applied Energy 88 (12):5042–55. doi:10.1016/j.apenergy.2011.07.008.
  • Jaiswal, R. L., and B. K. Pandey. 2022. Modelling for the variation of thermal conductivity of metallic nanoparticles. Physica B: Condensed Matter 627:413594. doi:10.1016/j.physb.2021.413594.
  • Jeong, K., C. Ji, S. Yeom, and T. Hong. 2022. Development of a greenhouse gas emissions benchmark considering building characteristics and national greenhouse emissions reduction target. Energy and Buildings 269:11248. doi:10.1016/j.enbuild.2022.112248.
  • Kwanchareon, P., A. Luengnaruemitchai, and S. Jai-In. 2007. Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 86 (7–8):1053–61. doi:10.1016/j.fuel.2006.09.034.
  • Lacey-Barnacle, M., R. Robison, and C. Foulds. 2020. Foulds, energy justice in the developing world: A review of theoretical frameworks, key research themes and policy implications. Energy for Sustainable Development 55:122–38. doi:10.1016/j.esd.2020.01.010.
  • Li, F. S., Z. W. Liu, Z. H. Ni, and H. Wang. 2019. Effect of biodiesel components on its lubrication performance. Journal of Materials Research and Technology 8 (5):3681–87. doi:10.1016/j.jmrt.2019.06.011.
  • Li, Y. H., Y. L. Zhai, M. Y. Ma, Z. H. Xuan, and H. Wang. 2021. Using molecular dynamics simulations to investigate the effect of the interfacial nanolayer structure on enhancing the viscosity and thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer 122:105181. doi:10.1016/j.icheatmasstransfer.2021.105181.
  • Lin, J. F., G. Gaustad, and T.A. Trabold. 2013. Profit and policy implications of producing biodiesel-ethanol-diesel fuel blends to specification. Applied Energy 104:936–44. doi:10.1016/j.apenergy.2012.11.049.
  • Liu, Z. W., F. S. Li, J. X. Shen, and H. Wang. 2019. Effect of oxidation of Jatropha curcas-derived biodiesel on its lubricating properties. Energy for Sustainable Development 52:33–39. doi:10.1016/j.esd.2019.06.003.
  • Mishra, S., K. R. Bukkarapu, and A. Krishnasamy. 2021. A composition based approach to predict density, viscosity and surface tension of biodiesel fuels. Fuel 285:119056. doi:10.1016/j.fuel.2020.119056.
  • Moreira, C. A., E. C. M. Faria, J. E. Queiroz, V. S. Duarte, M. N. Gomes, A. M. D. Silva, R. L. G. D. Paula, C. H. J. Franco, E. H. D. S. Cavalcanti, G. L. B. D. Aquino, et al. 2022. Structural insights and antioxidant analysis of a tri-methoxy chalcone with potential as a diesel-biodiesel blend additive. Fuel Processing Technology 227:107122. doi:10.1016/j.fuproc.2021.107122.
  • Mujtaba, M. A., M. A. Kalam, H. H. Masjuki, L. Razzaq, H. M. Khan, M. E. M. Soudagar, M. Gul, W. Ahmed, V. D. Raju, R. Kumar, et al. 2021. Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends. Renewable Energy 179:1447–57. doi:10.1016/j.renene.2021.07.121.
  • Park, S. H., H. K. Suh, and C. S. Lee. 2010. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel. Renewable Energy 35 (1):144–50. doi:10.1016/j.renene.2009.06.012.
  • Poling, B. E., J. M. Prausnitz, and J. P. O’Connell. 2001. The properties of gases and liquids. 5th ed. New York: McGraw-Hill.
  • Pradelle, F., S.L. Braga, A.R.F.D. Martins, F. Turkovics, and R.N.C. Pradelle. 2019. Experimental assessment of some key physicochemical properties of diesel-biodiesel-ethanol (DBE) blends for use in compression ignition engines. Fuel 248:241–53. doi:10.1016/j.fuel.2019.03.087.
  • Sanchez, F.Z., A.R.F.D. Martins, C.V.M. Braga, S.L. Braga, F.Y. Turkovics, and R.N.C. Pradelle. 2020. Study of effects of ignition improvers on ethanol compression ignition in the rapid compression machine. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (9). doi:10.1007/s40430-020-02577-y.
  • Shahir, V. K., C. P. Jawahar, and P. R. Suresh. 2015. Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review. Renewable and Sustainable Energy Reviews 45:686–97. doi:10.1016/j.rser.2015.02.042.
  • Shuang, W., S. Meng, and L. H. Long. 2020. An optimized model for predicting kinematic viscosities of biodiesel fuels. Fuel Cells 21:1.
  • Song, F. H., Q. L. Wang, Q. L. Meng, H. Mu, and J. Fan. 2021. Measurements on the thermal conductivity of three fuel blends containing a biodiesel compound methyl laurate+diesel compounds: N-Undecane, n-dodecane, n-tridecane. Thermochimica Acta 702:178986. doi:10.1016/j.tca.2021.178986.
  • Vergel-Ortega, M., G. Valencia-Ochoa, and J. Duarte-Forero. 2021. Experimental study of emissions in single-cylinder diesel engine operating with diesel-biodiesel blends of palm oil-sunflower oil and ethanol. Case Studies in Thermal Engineering 26:101190. doi:10.1016/j.csite.2021.101190.
  • Wang, W. C., F. S. Li, and H. Wang. 2021. The effect of tetrethylenepentamine (TEPA) on the oxidation stability and the lubrication performance of biodiesel. Industrial Crops and Products 171:113910. doi:10.1016/j.indcrop.2021.113910.
  • Wang, W. W., F. S. Li, and H. Wang. 2021. Study of light wavelength on the oxidative stability of Jatropha biodiesel. Fuel 292:120230. doi:10.1016/j.fuel.2021.120230.
  • Xuan, Z. H., Y. L. Zhai, M. Y. Ma, Y. H. Li, and H. Wang. 2021. Thermo-Economic performance and sensitivity analysis of ternary hybrid nanofluids. Journal of Molecular Liquids 323:114889. doi:10.1016/j.molliq.2020.114889.
  • Zhai, Y. L., Y. H. Li, Z. H. Xuan, Z. H. Li, and H. Wang. 2021. Determination of heat transport mechanism using nanoparticle property and interfacial nanolayer in a nanofluidic system. Journal of Molecular Liquids 344:117787. doi:10.1016/j.molliq.2021.117787.
  • Zheng, X., A. Huang, Y. Q. Bao, S. Wang, G. Z. Qin, and Y. Liu. 2022. Measurement of the thermal conductivity of the components of biodiesels: methyl laurate and methyl myristate. Fluid Phase Equilibria 556:113409. doi:10.1016/j.fluid.2022.113409.
  • Zöldy, M. 2001. Ethanol–biodiesel–diesel blends as a diesel extender option on compression ignition engines. Transport 26 (3):303–09. doi:10.3846/16484142.2011.623824.
  • Zuo, L., J. F. Wang, D. Q. Mei, S. C. Dai, and D. Adu-Mensah. 2021. Experimental investigation on combustion and (regulated and unregulated) emissions performance of a common-rail diesel engine using partially hydrogenated biodiesel-ethanol-diesel ternary blend. Renewable Energy 185:1272–83. doi:10.1016/j.renene.2021.12.085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.