72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic analysis on coupling characteristic of Twin-VGT and fuel injection parameters at variable altitudes

ORCID Icon, ORCID Icon, , , , , & show all
Pages 9882-9900 | Received 14 Apr 2022, Accepted 20 Oct 2022, Published online: 07 Nov 2022

References

  • Chen, G., L. Di , Su, N. 2016. Simulation on performance of Common-Rail Diesel Engine Equipped with Different Turbocharging Systems at Different Altitudes[J]. Transactions of CSICE 34 (06):504–12.
  • Duan, X., Z. Xu, X. Sun, B. Deng, and J. Liu. 2021. Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels[j]. Energy 231 (40):121069–79. doi:10.1016/j.energy.2021.121069.
  • Galindo, J., S. J R, H. Climent, and O. Varnier. 2010. Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model[j]. Energy Conversion and Management 51 (10):1958–69. doi:10.1016/j.enconman.2010.02.028.
  • Gürbüz, H., and S. Demirturk. 2020. Investigation of dual fuel combustion by different port injection fuels (neat ethanol and E85) in a DE95 diesel/ethanol blend fuelled CI engine[j]. Journal of Energy Resources Technology 142 (12):1–30. doi:10.1115/1.4047328.
  • Gu, Y., S. Zhu, M. Yang, H. Zhang, K. Deng, and Z. Yang. 2020. Analytical model for altitude adaptability of turbocharged heavy-duty diesel engine[J]. Journal of Energy Engineering, American Society of Civil Engineers 146 (4):040200381–92. doi:10.1061/(ASCE)EY.1943-7897.0000662.
  • Hashimoto, M., Y. Aoyagi, M. Kobayashi, T. Murayama, Y. Goto, and H. Suzuki. 2012 BSFC Improvement and NOx reduction by sequential turbo system in a heavy duty diesel engine[C] SAE Paper 2012-01-0712.
  • Jain, A., A. P. Singh, and A. K. Agarwal. 2017. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine[j]. Applied Energy 190 (06):658–69. doi:10.1016/j.apenergy.2016.12.164.
  • Li, H., L. Shi, and K. Deng. 2016. Development of turbocharging system for diesel engines of power generation application at different altitudes[j]. Journal of the Energy Institute 89 (4):755–65. doi:10.1016/j.joei.2015.04.001.
  • Liu, Z., and J. Liu. 2022. Effect of altitude conditions on combustion and performance of a turbocharged direct-injection diesel engine[j]. Journal of Automobile Engineering 236 (4):582–93. doi:10.1177/09544070211026204.
  • Liu, R., Z. Zhang, S. Dong, and G. Zhou. 2017. High-Altitude matching characteristic of regulated two-stage turbocharger with diesel engine[J]. Journal of Engineering for Gas Turbines and Power 139 (9):094501–09. doi:10.1115/1.4036283.
  • Liu, R., Z. Zhang, C. Yang, Y. Jiao, G. Zhou, and J. Ma. 2021. Influence of altitude on matching characteristic of electronic-controlled pneumatic two-stage turbocharging system with diesel engine[j]. Journal of Power and Energy 235 (1):94–105. doi:10.1177/0957650919901236.
  • Mao, B., M. Yao, Z. Zheng, and H. Liu. 2016 Effects of dual loop egr and variable geometry turbocharger on performance and emissions of a diesel engine[C] SAE Paper 01-2340.
  • Shi, X., T. Wang, and C. Ma. 2014. Simulations of the diesel engine performance with a two-stage sequential turbocharging system at different altitudes[j]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228 (14):1718–26. doi:10.1177/0954407014535919.
  • Shi, L., W. Xiao, M. Li, L. Lou, and K.-Y. Deng. 2017. Research on the effects of injection strategy on LTC combustion based on two-stage fuel injection[j]. Energy 121 (10):21–31. doi:10.1016/j.energy.2016.12.128.
  • Wang, P., Z. Hu, L. Shi, X. Tang, Y. Liu, and K. Deng. 2021. Experimental investigation of the effects of Miller timing on performance, energy and exergy characteristics of two-stage turbocharged marine diesel engine[j]. Fuel 292 (02):120252–69. doi:10.1016/j.fuel.2021.120252.
  • Wang, J., L. Shen, Y. Bi, and J. Lei. 2021. Modeling and optimization of a light-duty diesel engine at high altitude with a support vector machine and a genetic algorithm[j]. Fuel 285 (09):119137–54. doi:10.1016/j.fuel.2020.119137.
  • Wu, Y., and R. Reitz. 2014. Effects of EGR and boost Pressure on Reactivity Controlled Compression Ignition (RCCI) engine at high load operating conditions[J]. Journal of Energy Resources Technology 137 (03):1–8.
  • Wu, B., Q. Zhan, X. Yu, G. Lv, X. Nie, and S. Liu. 2017. Effects of Miller cycle and variable geometry turbocharger on combustion and emissions in steady and transient cold process[j]. Applied Thermal Engineering 118 (02):621–29. doi:10.1016/j.applthermaleng.2017.02.074.
  • Xia, M., and F. Zhang. 2020. Application of multi-parameter fuzzy optimization to enhance performance of a regulated two-stage turbocharged diesel engine operating at high altitude[J]. Energies, Multidisciplinary Digital Publishing Institute 13 (17):4278–80. doi:10.3390/en13174278.
  • Yang, F., H. Cho, and H. Zhang. 2019. Performance prediction and optimization of an organic rankine cycle (ORC) using back propagation neural network for diesel engine waste heat recovery[j]. Journal of Energy Resources Technology 141 (06):1–8. doi:10.1115/1.4042408.
  • Yang, M., Y. Gu, K. Deng, Z. Yang, and S. Liu. 2018. Influence of altitude on two-stage turbocharging system in a heavy-duty diesel engine based on analysis of available flow energy[J]. Applied Thermal Engineering 129 (09):12–21. doi:10.1016/j.applthermaleng.2017.09.138.
  • Yang, M., Y. Gu, K. Deng, Z. Yang, and Y. Zhang. 2017. Analysis on altitude adaptability of turbocharging systems for a heavy-duty diesel engine[J]. Applied Thermal Engineering 128 (09):1196–207. doi:10.1016/j.applthermaleng.2017.09.065.
  • Yoo, H., P. B Y, H. Cho, and J. Park. 2019. Performance optimization of a diesel engine with a two-stage turbocharging system and dual-loop EGR using multi-objective pareto optimization based on diesel cycle simulation[J]. Energies, Multidisciplinary Digital Publishing Institute 12 (22):4223–49. doi:10.3390/en12224223.
  • Zhang, Z., R. Liu, S. Dong, G. Zhou, W. Liu, and Q. Peng. 2022. Thermodynamic cycle characteristics of twin-VGT diesel engine and its control method at variable altitudes[j]. Applied Thermal Engineering 211 (03):118429–46. doi:10.1016/j.applthermaleng.2022.118429.
  • Zhang, Z., R. Liu, G. Zhou. 2019. Influence of varying altitudes on matching characteristics of the Twin-VGT system with a diesel engine and performance based on analysis of available exhaust energy[j]. Journal of Automobile Engineering 35 (09):01–14.
  • Zhang, H., L. Shi, K. Deng, S. Liu, and Z. Yang. 2020. Experiment investigation on the performance and regulation rule of two-stage turbocharged diesel engine for various altitudes operation[j]. Energy 192 (10):116653–67. doi:10.1016/j.energy.2019.116653.
  • Zhang, H., X. Tang, L. Mu. 2021. Theoretical and experimental investigation of the pressure ratio distribution and the regulation strategy of a two-stage turbocharging system for various altitudes operation[j]. Journal of Mechanical Science and Technology 356 (02):1–18.
  • Zhang, F., Z. Wang, J. Tian, L. Li, K. Yu, and K. He. 2020. Effect of EGR and fuel injection strategies on the heavy-duty diesel engine emission performance under transient operation[J]. Energies, Multidisciplinary Digital Publishing Institute 13 (3):1–17. doi:10.3390/en13030566.
  • Zhao, R., W. Zhuge, Y. Zhang, M. Yang, and R. Martinez-Botas. 2016. Numerical study of a two-stage turbine characteristic under pulsating flow conditions[j]. Journal of Mechanical Science and Technology 30 (2):557–65. doi:10.1007/s12206-016-0109-6.
  • Zheng, Z., H. Feng, B. Mao, H. Liu, and M. Yao. 2018. A theoretical and experimental study on the effects of parameters of two-stage turbocharging system on performance of a heavy-duty diesel engine[j]. Applied Thermal Engineering 129 (10):822–32. doi:10.1016/j.applthermaleng.2017.10.044.
  • Zhou, G., R. Liu, Z. Zhang, C. Yang, and H. Ding. 2021. Optimization of diesel engine dual-variable geometry turbocharger regulated two-stage turbocharging system based on radial basis function neural network-quantum genetic algorithm[j]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Taylor & Francis 125 (02):1–17. doi:10.1080/15567036.2020.1837299.
  • Zhu, D., Z. Sun, and X. Zheng. 2019. Turbocharging strategy among variable geometry turbine, two-stage turbine, and asymmetric two-scroll turbine for energy and emission in diesel engines[j]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234 (07):1–15. doi:10.1177/0957650919891355.
  • Zhu, Z., F. Zhang, C. Li. 2014. Calibration for fuel injection parameters of the diesel engine working at plateau via simulating[J]. Advances in Mechanical Engineering 58 (08):1–8.
  • Zhu, Z., F. Zhang, C. Li, T. Wu, K. Han, J. Lv, Y. Li, and X. Xiao. 2015. Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau[j]. Applied Energy 157 (08):789–97. doi:10.1016/j.apenergy.2015.03.126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.