95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regenerative hydraulic SUSPENSION: Numerical model and Evaluation of Energy Harvesting Potential using bond graphs

, , ORCID Icon &
Pages 10409-10432 | Received 09 Jun 2022, Accepted 10 Nov 2022, Published online: 02 Dec 2022

References

  • Bowen, L., J. Vinolas, J. L. Olazagoitia, and J. E. Otero. 2019. An innovative energy harvesting shock absorber system using cable transmission. IEEE/ASME Transactions on Mechatronics 24(2):689–99. doi:10.1109/TMECH.2019.2892824.
  • Damić, V., and J. Montgomery. 2015. Mechatronics by bond graphs – An object-oriented approach to modelling and simulation. 2nd ed. Berlin Heidelberg: Springer Verlag.
  • Gong, B., X. Guo, L. Xu, and Z. Fang. 2017. The net power control of hydraulic-electricity energy regenerative suspension. Journal of Vibroengineering 19(8):6049–64. doi:10.21595/jve.2017.18283.
  • Guntur, H. L., W. Hendrowati, and S. N. H. Syuhri. 2020. Designing hydro-magneto-electric regenerative shock absorber for vehicle suspension considering conventional-viscous shock absorber performance. Journal of Mechanical Science and Technology 34(1):55–67. doi:10.1007/s12206-019-1205-1.
  • Guo, S., L. Xu, Y. Liu, X. Guo, and L. Zuo. 2017. Modeling and experiments of a hydraulic electromagnetic energy-harvesting shock absorber. IEEE-ASME Transactions on Mechatronics 22(6):2684–94. doi:10.1109/TMECH.2017.2760341.
  • Kim, J. H., Y. J. Shin, Y. D. Chun, and J. H. Kim. 2018. Design of 100W regenerative vehicle suspension to harvest energy from road surfaces. International Journal of Precision Engineering and Manufacturing 19(7): 1089–96. doi:10.1007/s12541-018-0129-5.
  • Li, P., and L. Zuo. 2017. Influences of the electromagnetic regenerative dampers on the vehicle suspension performance. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 231(3):383–94. doi:10.1177/0954407016639503.
  • Li, S. Y., J. Xu, X. H. Pu, T. Tao, and X. S. Mei. 2019. A novel design of a damping failure free energy-harvesting shock absorber system. Mechanical Systems and Signal Processing 132:640–53. doi:10.1016/j.ymssp.2019.07.004.
  • Liu, J., X. J. Li, X. L. Zhang, and X. F. Chen. 2019. Modeling and simulation of energy-regenerative active suspension based on BP neural network PID control. Shock and Vibration 2019:1–8. doi:10.1155/2019/4609754.
  • Liu, J., X. W. Li, Y. Zhang, and P. Chen. 2019. A novel pneumatic-mechanical energy regenerative suspension for air brake trucks. International Journal of Heavy Vehicle Systems 26(6):805–23. doi:10.1504/IJHVS.2019.102689.
  • Liu, J., X. W. Li, Z.H. Wang, and Y. Zhang. 2016. Modelling and experimental study on active energy-regenerative suspension structure with variable universe fuzzy PD control. Shock and Vibration 2016:1–11. doi:10.1155/2016/6170275.
  • Liu, Y. L., L. Xu, and L. Zuo. 2017. Design, modeling, lab, and field tests of a mechanical-motion-rectifier- based energy harvester using a ball-screw mechanism. IEEE-ASME Transactions on Mechatronics 22(5):1933–43. doi:10.1109/TMECH.2017.2700485.
  • Maravandi, A., and M. Moallem. 2015. Regenerative shock absorber using a two-leg motion conversion mechanism. IEEE-ASME Transactions on Mechatronics 20(6):2853–61. doi:10.1109/TMECH.2015.2395437.
  • Mucka, P. 2016. Energy-harvesting potential of automobile suspension. Vehicle System Dynamics 54 (12):1651–70. doi:10.1080/00423114.2016.1227077.
  • Ning, D. H., S. S. Sun, H. P. Du, W. H. Li, and N. Zhang. 2018. Vibration control of an energy regenerative seat suspension with variable external resistance. Mechanical Systems and Signal Processing 106:94–113. doi:10.1016/j.ymssp.2017.12.036.
  • Reza-Kashyzadeh, K., M. J. Ostad-Ahmad-Ghorabi, and A. Arghavan. 2013. Study effects of vehicle velocity on a road surface roughness simulation. Applied Mechanics and Materials 372:650–56. doi:10.4028/scientific.net/AMM.372.650.
  • Shi, D. H., L. Chen, R. C. Wang, C. C. Yuan, and Y. L. Liu. 2019. Research on energy-regenerative performance of suspension system with semi-active control. Journal of Vibration Engineering & Technologies 7(5):465–75. doi:10.1007/s42417-019-00144-x.
  • Taghavifar, H. 2021. A novel energy harvesting approach for hybrid electromagnetic-based suspension system of off-road vehicles considering terrain deformability. Mechanical Systems and Signal Processing 146:106988. doi:10.1016/j.ymssp.2020.106988.
  • Tvrdic, V., S. Podrug, D. Jelaska, and M. Perkusic. 2020. Regenerative hydraulic shock absorber for vehicle applications: Prototype design. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects:1–25. doi:10.1080/15567036.2020.1745337.
  • Wang, R. C., Y. S. Ding, Q. Ye, R. K. Ding, and J. G. Qian. 2017. Research into the effect of supercapacitor terminal voltage on regenerative suspension energy-regeneration and dynamic performance. Shock and Vibration 2017:1–8. doi:10.1155/2017/6542015.
  • Xie, L. H., J. H. Li, S. Q. Cai, and X. D. Li. 2017. Electromagnetic energy-harvesting damper with multiple independently controlled transducers: On-demand damping and optimal energy regeneration. IEEE-ASME Transactions on Mechatronics 22(6): 2705–13. doi:10.1109/TMECH.2017.2758783.
  • Xie, L. H., S. Q. Cai, G. W. Huang, L. D. Huang, J. H. Li, and X. D. Li. 2020. On energy harvesting from a vehicle damper. IEEE-ASME Transactions on Mechatronics 25(1):108–17. doi:10.1109/TMECH.2019.2950952.
  • Zhang, R., and X. Wang. 2019. Parameter study and optimization of a half-vehicle suspension system model integrated with an arm-teeth regenerative shock absorber using Taguchi method. Mechanical Systems and Signal Processing 126:65–81. doi:10.1016/j.ymssp.2019.02.020.
  • Zhang, R., X. Wang, and Z. W. Liu. 2018. A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation. Journal of Sound and Vibration 417:260–76. doi:10.1016/j.jsv.2017.12.017.
  • Zheng, P., R. C. Wang, and J. W. Gao. 2020. A Comprehensive Review on Regenerative Shock Absorber Systems. Journal of Vibration Engineering & Technologies 8(1):225–46. doi:10.1007/s42417-019-00101-8.
  • Zou, J., X. Guo, L. Xu, G. Tan, C. Zhang, and J. Zhang. 2017. Design, modeling, and analysis of a novel hydraulic energy-regenerative shock absorber for vehicle suspension. Shock and Vibration 2017:1–12. doi:10.1155/2017/3186584.
  • Zou, J., X. Guo, M. A. Abdelkareem, L. Xu, and J. Zhang. 2019. Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers. Mechanical Systems and Signal Processing 127:345–69. doi:10.1016/j.ymssp.2019.02.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.