225
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on combustion characteristics of novel preheated air swirl burner operating on the heavy oil fired furnace for reducing NOx emission

ORCID Icon, ORCID Icon &
Pages 96-110 | Received 21 Sep 2022, Accepted 15 Dec 2022, Published online: 12 Jan 2023

References

  • Amiri, M., and A. Shirneshan. 2020. Effects of air swirl on the combustion and emissions characteristics of a cylindrical furnace fueled with diesel-biodiesel-n-butanol and diesel-biodiesel-methanol blends. Fuel 268 (November):117295. 2019. doi:10.1016/j.fuel.2020.117295.
  • Belal, B. Y., G. Li, Z. Zhang, H. M. El-Batsh, H. A. Moneib, and A. M. A. Attia. 2021. The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames. Energy 228 (x):120622. doi:10.1016/j.energy.2021.120622.
  • Chen, N., Y. Gan, Y. Luo, and Z. Jiang. 2022. A review on the technology development and fundamental research of electrospray combustion of liquid fuel at small-scale. Fuel Processing Technology 234 (May):107342. doi:10.1016/j.fuproc.2022.107342.
  • Choi, S. K., Y. S. Choi, S. J. Kim, and Y. W. Jeong. 2016. Characteristics of flame stability and gaseous emission of biocrude-oil/ethanol blends in a pilot-scale spray burner. renewable energy 91:516–23. doi:10.1016/j.renene.2016.01.066.
  • Drennan, S. A., V. Mandayam, and G. K. Rice. 1997. Low NOx experiences firing residual oil in industrial boilers. Processing AFRC Institute Symptoms. (x)
  • Fan, S., Z. Li, X. Yang, G. Liu, and Z. Chen. 2010. Influence of outer secondary-air vane angle on combustion characteristics and NOx emissions of a down-fired pulverized-coal 300 MWe utility boiler. Fuel 89 (7):1525–33. doi:10.1016/j.fuel.2009.09.014.
  • Gupta, A. K., M. J. Lewis, and M. Daurer. 2001. Swirl effects on combustion characteristics of premixed flames. Journal of Engineering for Gas Turbines and Power 123 (3):619–26. doi:10.1115/1.1339987.
  • Hall, W., T. Spencer, and S. Kumar. 2020. Towards a low carbon steel sector. The Energy and Resources Institute (TERI) Delhi.
  • Hidegh, G., and V. Józsa. 2020. Correlation analysis of chemiluminescent and pollutant emissions of a liquid-fueled turbulent swirl burner. Journal of the Energy Institute 93 (4):1390–98. doi:10.1016/j.joei.2020.01.001.
  • Hill, S. C., and L. D. Smoot. 2000. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science 26 (4):417–58. doi:10.1016/S0360-1285(00)00011-3.
  • Jing, J., Z. Li, G. Liu, Z. Chen, and F. Ren. 2010. Influence of different outer secondary air vane angles on flow and combustion characteristics and NOx emissions of a new swirl coal burner. Energy & Fuels 24 (1):346–54. doi:10.1021/ef900836a.
  • Jouhara, H., N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou. 2018. Waste heat recovery technologies and applications. Thermal Science and Engineering Progress 6 (January):268–89. doi:10.1016/j.tsep.2018.04.017.
  • Karyeyen, S., J. S. Feser, E. Jahoda, and A. K. Gupta. 2020. Development of distributed combustion index from a swirl-assisted burner. Applied Energy 268 (March):114967. doi: 10.1016/j.apenergy.2020.114967.
  • Kazagic, A., I. Smajevic, and N. Hodz. 2016. Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas ˇ ic. Applied Energy 168:38–47. doi:10.1016/j.apenergy.2016.01.081.
  • Khalil, K. H., F. M. El-Mahallawy, and H. A. Moneib. 1977. Effect of combustion air swirl on the flow pattern in a cylindrical oil fired furnace. Symptoms Combustion 16 (1):135–43. doi:10.1016/S0082-0784(77)80319-6.
  • Khare, S. P., T. F. Wall, A. Z. Farida, Y. Liu, B. Moghtaderi, and R. P. Gupta. 2008. Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel 87 (7):1042–49. doi:10.1016/j.fuel.2007.06.026.
  • Kuang, M., Z. Li, Z. Ling, and X. Zeng. 2014. Evaluation of staged air and over fi re air in regulating air-staging conditions within a large-scale down- fi red furnace. Applied Thermal Engineering 67 (x):97–105. doi:10.1016/j.applthermaleng.2014.03.009.
  • Ling, Z., X. Zeng, T. Ren, and H. Xu. 2015. Establishing a low-NOx and high-burnout performance in a large-scale, deep-air-staging laboratory furnace fired by a heavy-oil swirl burner. Applied Thermal Engineering 79 (x):117–23. doi:10.1016/j.applthermaleng.2015.01.016.
  • Ling, Z., H. Zhou, and T. Ren. 2015. Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner. Energy 91 (x):110–16. doi:10.1016/j.energy.2015.08.025.
  • Lixing, Z., L. Wenyi, Z. Jian, and W. Zuolan. 1988. Numerical modeling of three-dimensional flow field and two-dimensional coal combustion in a cylindrical combustor of co-flow jets with large velocity difference. Symptoms Combustion 21 (1):257–64. doi:10.1016/S0082-0784(88)80253-4.
  • Li, S., T. Xu, S. Hui, and X. Wei. 2009. Nox emission and thermal efficiency of a 300 MWe utility boiler retrofitted by air staging. Applied Energy 86 (9):1797–803. doi:10.1016/j.apenergy.2008.12.032.
  • Ma, L., S. Yu, Q. Fang, C. Zhang, and G. Chen. 2020. Effect of separated over-fire air angle on combustion and NOx emissions in a down-fired utility boiler with a novel combustion system. Process Safety and Environmental Protection 138 (x):57–66. doi:10.1016/j.psep.2020.03.005.
  • Morcos, V. H., and Y. M. Abdel-Rahim. 1999. Parametric study of flame length characteristics in straight and swirl light-fuel oil burners. Fuel 78 (8):979–85. doi:10.1016/S0016-2361(99)00013-7.
  • Motamedifar, N., and A. Shirneshan. 2018. An experimental study of emission characteristics from cylindrical furnace: Effects of using diesel-ethanol-biodiesel blends and air swirl. Fuel 221 (February):233–39. doi:10.1016/j.fuel.2018.01.018.
  • Ouyang, Z., H. Ding, W. Liu, S. Li, and X. Cao. 2021. Effect of the staged secondary air on NOx emission of pulverized semi-coke flameless combustion with coal preheating technology. Fuel 291 (January):120137. doi: 10.1016/j.fuel.2021.120137.
  • Pedersen, K. H., A. D. Jensen, M. Berg, L. H. Olsen, and K. Dam-Johansen. 2009. The effect of combustion conditions in a full-scale low-NOx coal fired unit on fly ash properties for its application in concrete mixtures. Fuel Processing Technolo 90 (2):180–85. doi:10.1016/j.fuproc.2008.08.012.
  • Pei, X., P. Guida, K. M. AlAhmadi, I. A. Al Ghamdi, S. Saxena, and W. L. Roberts. 2021. Cenosphere formation of heavy fuel oil/water emulsion combustion in a swirling flame. Fuel Processing Technolo 216 (December):106800. 2020. doi:10.1016/j.fuproc.2021.106800.
  • Pourhoseini, S. H., and R. Asadi. 2017. An experimental study of optimum angle of air swirler vanes in liquid fuel burners. Journal of Energy Resources Technology, Transactions of the ASME 139 (3):1–5. doi:10.1115/1.4035023.
  • Rebola, A., and M. Costa. 2002. Simultaneous reduction of NOx and particulate emissions from heavy fuel oil-fired furnaces. Proceedings of the Combustion Institute, International Symposium on Combustion 29 (2):2243–50. doi:10.1016/S1540-7489(02)80273-5.
  • Sellan, D., and S. Balusamy. 2021. Experimental study of swirl-stabilized turbulent premixed and stratified LPG/air flames using optical diagnostics. Experimental Thermal and Fluid Science 121 (October):110281. 2020. doi:10.1016/j.expthermflusci.2020.110281.
  • Shaheen, A., and M. S. Anwar. 2013. Uncertainties and measurements in experimental physics. 62606957 (1):1–20. https://physlab.org/wp-content/uploads/2016/03/uncertainties_newmanual1n1.pdf
  • Sharma, H., A. Kumar, and V. Goel. 2010. Performance model of metallic concentric tube recuperator with counter flow arrangement. Heat and Mass Transfer/Waerme- und Stoffuebertragung 46 (3):295–304. doi:10.1007/s00231-009-0571-0.
  • Shekarchian, M., F. Zarifi, M. Moghavvemi, F. Motasemi, and T. M. I. Mahlia. 2013. Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques. Energy Conversion and Management 71:51–61. doi:10.1016/j.enconman.2013.03.008.
  • Singh, P., H. Singh, and A. K. Singh. 2021. Design and development of an energy-efficient oil-fired tilting furnace with an innovative recuperator. International Journal of Metalcasting, no. June, 16:1745–57. doi:10.1007/s40962-021-00713-5.
  • SUNG, Y., and G. CHOI. 2015. Effectiveness between swirl intensity and air staging on NOx emissions and burnout characteristics in a pulverized coal fired furnace. Fuel Processing Technology 139 (x):15–24. doi:10.1016/j.fuproc.2015.07.026.
  • Sung, Y., M. Choi, S. Lee, G. Lee, M. Shin, G. Choi, and D. Kim. 2017. Generation mechanisms of tube vortex in methane-assisted pulverized coal swirling flames. Fuel Processing Technology 156:228–34. doi:10.1016/j.fuproc.2016.08.034.
  • Thundil Karuppa Raj, R., and V. Ganesan. 2008. Study on the effect of various parameters on flow development behind vane swirlers. International Journal of Thermal Sciences 47 (9):1204–25. doi:10.1016/j.ijthermalsci.2007.10.019.
  • Ti, S., et al. 2014. Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600MWe utility boiler. Energy 74 (C):775–87. doi:10.1016/j.energy.2014.07.049.
  • Ti, S., Z. Chen, Z. Li, K. Min, Q. Zhu, L. Chen, and Z. Wang. 2017. Effect of outer secondary air vane angles on combustion characteristics and NOx emissions for centrally fuel rich swirl burner in a 600-MWe wall-fired pulverized-coal utility boiler. Applied Thermal Engineering 125 (x):951–62. doi:10.1016/j.applthermaleng.2017.05.180.
  • U.S. Department of Energy. 2014. Waste heat reduction and recovery for improving furnace efficiency, productivity and emissions. [Online]. Available: www.eere.energy.gov/industry/.
  • Villasenor, R., and R. Escalera. 1998. A highly radiative combustion chamber for heavy fuel oil combustion. International Journal of Heat and Mass Transfer 41 (20):3087–97. doi:10.1016/S0017-9310(98)00025-8.
  • Wang, J. M., P. XU, H. -J. YAN, J. -M. ZHOU, S. -X. LI, G. -C. GUI, and W. -K. LI. 2013. Burner effects on melting process of regenerative aluminum melting furnace. Transactions of Nonferrous Metals Society of China 23 (10):3125–36. doi:10.1016/S1003-6326(13)62843-5.
  • Xu, Q., M. Shen, K. Shi, Z. Liu, J. Feng, Y. Xiong, L. Liu, J. Wang, J. Han, Z. Tang, et al. 2021. Influence of jet angle on diffusion combustion characteristics and NOx emissions in a self-reflux burner. Case Studies in Thermal Engineering 25 (March): doi:10.1016/j.csite.2021.100953,
  • Yang, W., B. Wang, S. Lei, K. Wang, T. Chen, Z. Song, C. Ma, Y. Zhou, and L. Sun. 2019. Combustion optimization and NOx reduction of a 600 MWe down-fired boiler by rearrangement of swirl burner and introduction of separated over-fire air. Journal of Cleaner Production 210 (x):1120–30. doi:10.1016/j.jclepro.2018.11.077.
  • Zhou, H., and S. Meng. 2019. Numerical prediction of swirl burner geometry effects on NOx emission and combustion instability in heavy oil-fired boiler. Applied Thermal Engineering 159 (February):113843. 2018. doi:10.1016/j.applthermaleng.2019.113843.
  • Zhou, H., T. Ren, and Y. Yang. 2015. Impact of OFA on combustion and NOx emissions of a large-scale laboratory furnace fired by a heavy-oil swirl burner. Applied Thermal Engineering 90 (x):994–1006. doi:10.1016/j.applthermaleng.2015.07.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.