265
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of diesel engine running on diesel fuel supplemented with CeO2 metal nanoparticles

& ORCID Icon
Pages 246-262 | Received 09 Sep 2022, Accepted 07 Jan 2023, Published online: 17 Jan 2023

References

  • Abdullah, I. S., A. Khalid, N. Jaat, R. S. Nursal, H. Koten, and Y. Karagoz. 2021. A study of ignition delay, combustion process and emissions in a high ambient temperature of diesel combustion. Fuel 297:120706. doi:10.1016/j.fuel.2021.120706.
  • Ağbulut, Ü., F. Polat, and S. Sarıdemir. 2021. A comprehensive study on the influences of different types of nanosized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects. Energy 229:120548. doi:10.1016/j.energy.2021.120548.
  • Akbarian, E., and B. Najafi. 2019. A novel fuel containing glycerol triacetate additive, biodiesel and diesel blends to improve dual-fuelled diesel engines performance and exhaust emissions. Fuel 236:666–76. doi:10.1016/j.fuel.2018.08.142.
  • Alabbad, M., Y. Li, K. Aljohani, G. Kenny, K. Hakimov, M. Al-Lehaibi, A. Emwas, P. Meier, J. Badra, H. Curran, et al. 2020. Ignition delay time measurements of diesel and gasoline blends. Combustion and Flame 222:460–75. doi:10.1016/j.combustflame.2020.09.008.
  • Alkhayat, S. A., G. D. Joshi, and N. Henein. 2021. Analysis and correlation of ignition delay for hydrotreated vegetable oil and ultra low sulfur diesel and their blends in ignition quality tester. Fuel 289:119816. doi:10.1016/j.fuel.2020.119816.
  • Burden, S., A. Tekawade, and M. A. Oehlschlaeger. 2018. Ignition delay times for jet and diesel fuels: Constant volume spray and gas-phase shock tube measurements. Fuel 219:312–19. doi:10.1016/j.fuel.2018.01.113.
  • Cai, P., C. Zhang, Z. Jing, Y. Peng, J. Jing, and H. Sun. 2021. Effects of Fischer-Tropsch diesel blending in petrochemical diesel on combustion and emissions of a common-rail diesel engine. Fuel 305:121587. doi:10.1016/j.fuel.2021.121587.
  • Candan, F., M. Ciniviz, and Ö. İ. 2017. Effect of cetane improver addition into diesel fuel methanol mixtures on performance and emissions at different injection pressures. Thermal Science 21 (1):555–66. doi:10.2298/TSCI160430265C.
  • Chen, Z., J. He, H. Chen, L. Geng, and P. Zhang. 2021. Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel 304:121360. doi:10.1016/j.fuel.2021.121360.
  • Dehhaghi, M., H. K. S. Panahi, M. Aghbashlo, S. S. Lam, and M. Tabatabaei. 2021. The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts. Energy 225:120259. doi:10.1016/j.energy.2021.120259.
  • Devarajan, Y., N. Beemkumar, S. Ganesan, and T. Arunkumar. 2020. An experimental study on the influence of an oxygenated additive in diesel engine fuelled with neat papaya seed biodiesel/diesel blends. Fuel 268:117254. doi:10.1016/j.fuel.2020.117254.
  • EL-Seesy, A. I., M. Nour, H. Hassan, A. Elfasakhany, Z. He, and M. A. Mujtaba. 2021. Diesel-oxygenated fuels ternary blends with nano additives in compression ignition engine: A step towards cleaner combustion and green environment. Case Studies in Thermal Engineering 25:100911. doi:10.1016/j.csite.2021.100911.
  • Elumalai, P. V., S. K. Dash, M. Parthasarathy, N. R. Dhineshbabu, D. Balasubramanian, D. N. Cao, T. H. Truong, A. T. Le, and A. T. Hoang. 2022. Combustion and emission behaviors of dual-fuel premixed charge compression ignition engine powered with n-pentanol and blend of diesel/waste tire oil included nanoparticles. Fuel 324:124603. doi:10.1016/j.fuel.2022.124603.
  • Frost, J., A. Tall, A. M. Sheriff, A. Schönborn, and P. Hellier. 2021. An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine. International Journal of Hydrogen Energy 46 (71):35495–510. doi:10.1016/j.ijhydene.2021.08.089.
  • Gad, M. S., A. I. EL-Seesy, H. M. Abu Hashish, Z. He, and W. G. Alshaer. 2021. Combustion and emissions aspects of a diesel engine working with sheep fat oil biodiesel-diesel blends. Case Studies in Thermal Engineering 26:101162. doi:10.1016/j.csite.2021.101162.
  • Gad, M. S., and S. M. A. Razek. 2021. Impact of HHO produced from dry and wet cell electrolyzers on diesel engine performance, emissions and combustion characteristics. International Journal of Hydrogen Energy 46 (43):22277–91. doi:10.1016/j.ijhydene.2021.04.077.
  • Garzón, N. A. N., A. A. M. Oliveira, and E. Bazzo. 2019. An ignition delay correlation for compression ignition engines fueled with straight soybean oil and diesel oil blends. Fuel 257:116050. doi:10.1016/j.fuel.2019.116050.
  • Han, J., and L. M. T. Somers. 2021. Comparative investigation of ignition behavior of butanol isomers using constant volume combustion chamber under diesel-engine like conditions. Fuel 304:121347. doi:10.1016/j.fuel.2021.121347.
  • Hariharan, D., S. R. Krishnan, K. K. Srinivasan, and A. Sohail. 2021. Multiple injection strategies for reducing HC and CO emissions in diesel-methane dual-fuel low temperature combustion. Fuel 305:121372. doi:10.1016/j.fuel.2021.121372.
  • Harsha, C. H. S., T. Suganthan, and S. Srihari. 2020. Performance and emission characteristics of diesel engine using biodiesel-diesel-nanoparticle blends-an experimental study. Materials Today: Proceedings 24:1355–64. doi:10.1016/j.matpr.2020.04.453.
  • Hoang, A. T. 2021. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. Fuel Processing Technology 218:106840. doi:10.1016/j.fuproc.2021.106840.
  • Hoang, A. T., M. X. Le, S. Nižetić, Z. Huang, A. Ü, I. Veza, Z. Said, A. T. Le, V. D. Tran, and X. P. Nguyen. 2022. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: A control comparison between biodiesel and diesel fuel. Fuel 326:124981. doi:10.1016/j.fuel.2022.124981.
  • Jayaseelan, G. A. C., A. Anderson, L. Prabhu, and V. Srinivasan. 2020. Impact of cerium oxide nanoadditives on the performance and emission characteristics of candlenut biodiesel. Materials Today: Proceedings 33:890–94. doi:10.1016/j.matpr.2020.06.420.
  • Jiaqiang, E., Z. Zhang, J. Chen, M. Pham, X. Zhao, Q. Peng, B. Zhang, and Z. Yin. 2018. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Conversion and Management 169:194–205. doi:10.1016/j.enconman.2018.05.073.
  • Kalaimurugan, K., S. Karthikeyan, M. Periyasamy, and G. Mahendran. 2020. Experimental investigations on the performance characteristics of CI engine fuelled with cerium oxide nanoparticle added biodiesel-diesel blends. Materials Today: Proceedings 33:2882–85. doi:10.1016/j.matpr.2020.02.778.
  • Kegl, T., A. K. Kralj, B. Kegl, and M. Kegl. 2021. Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. Progress in Energy and Combustion Science 83:100897. doi:10.1016/j.pecs.2020.100897.
  • Kobashi, Y., M. Todokoro, G. Shibata, H. Ogawa, T. Mori, and D. Imai. 2020. EGR gas composition effects on ignition delays in diesel combustion. Fuel 281:118730. doi:10.1016/j.fuel.2020.118730.
  • Koli, S. R., and Y. V. H. Rao. 2021. Combustion analysis of single cylinder diesel engine operated on dual fuel mode. Materials Today: Proceedings 47:5533–41. doi:10.1016/j.matpr.2021.03.389.
  • Kumaravel, S. T., A. Murugesan, C. Vijayakumar, and M. Thenmozhi. 2019. Enhancing the fuel properties of tyre oil diesel blends by doping nano additives for green environments. Journal of Cleaner Production 240:118128. doi:10.1016/j.jclepro.2019.118128.
  • Manigandana, S., R. Sarweswaran, D. P. Booma, Y. Sohret, A. Kondratiev, S. Venkatesh, M. R. Vimal, and J. J. Joshua. 2020. Comparative study of nanoadditives TiO2, CNT, Al2O3, CuO and CeO2 on reduction of diesel engine emission operating on hydrogen fuel blends. Fuel 262:116336. doi:10.1016/j.fuel.2019.116336.
  • Mubarak, M., A. Shaija, and T. V. Suchithra. 2021. Experimental evaluation of Salvinia molesta oil biodiesel/diesel blends fuel on combustion, performance and emission analysis of diesel engine. Fuel 287:119526. doi:10.1016/j.fuel.2020.119526.
  • Mujtaba, M. A., M. A. Kalam, H. H. Masjuki, M. Gul, M. E. M. Soudagar, H. C. Ong, W. Ahmed, A. E. Atabani, L. Razzaq, and M. Yusoff. 2020. Comparative study of nanoparticles and alcoholic fuel additives-biodiesel diesel blend for performance and emission improvements. Fuel 279:118434. doi:10.1016/j.fuel.2020.118434.
  • Muruganantham, P., P. Pandiyan, and S. Ravishankar. 2021. Analysis on performance and emission characteristics of corn oil methyl ester blended with diesel and cerium oxide nanoparticle. Case Studies in Thermal Engineering 26:101077. doi:10.1016/j.csite.2021.101077.
  • Nayak, S. K., and P. C. Mishra. 2017. Application of neem biodiesel and dimethyl carbonate as alternative fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (3):284–90. doi:10.1080/15567036.2015.1062828.
  • Nayak, S. K., S. Nižetić, H. Pham VV, Ö. A. Z, V. G. Bui, K. Wattanavichien, and A. T. Hoang. 2022. Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. Journal of Cleaner Production 333:130160. doi:10.1016/j.jclepro.2021.130160.
  • Pan, S., J. Wei, C. Tao, G. Lv, Y. Qian, Q. Liu, and W. Han. 2021. Discussion on the combustion, performance and emissions of a dual fuel diesel engine fuelled with methanol based CeO2 nanofluids. Fuel 302:121096. doi:10.1016/j.fuel.2021.121096.
  • Pastor, J. V., A. García, C. Micó, and A. A. García-Carrero. 2020. Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel 260:116377. doi:10.1016/j.fuel.2019.116377.
  • Pham, P. X., N. V. T. Pham, T. V. Pham, V. H. Nguyen, and K. T. Nguyen. 2021. Ignition delays of biodiesel-diesel blends: Investigations into the role of physical and chemical processes. Fuel 303:121251. doi:10.1016/j.fuel.2021.121251.
  • Rahiman, M. K., S. Santhoshkumar, D. Subramaniam, A. Avinash, and A. Pugazhendhi. 2022. Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics. Energy 239:122373. doi:10.1016/j.energy.2021.122373.
  • Simsek, S., S. Uslu, and H. Simsek. 2022a. Evaluation of the effect of a new alternative fuel containing boron and hydrogen on gasoline engine performance and emission responses. International Journal of Environmental Science and Technology 19 (6):4913–22. doi:10.1007/s13762-021-03460-6.
  • Simsek, S., S. Uslu, and H. Simsek. 2022b. Response surface methodology-based parameter optimization of single-cylinder diesel engine fueled with graphene oxide dosed sesame oil/diesel fuel blend. Energy and AI 10:100200. doi:10.1016/j.egyai.2022.100200.
  • Uslu, S. 2020. Multi-Objective Optimization of Biodiesel and Diethyl Ether Doped Diesel Engine by Taguchi Method. International Journal of Automotive Science and Technology 4 (3):171–79. doi:10.30939/ijastech.770068.
  • Uslu, S., and M. Celik. 2023. Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends. Energy 266:126403. doi:10.1016/j.energy.2022.126403.
  • Uslu, S., S. Simsek, and H. Simsek. 2023. RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends. Energy 266:126439. doi:10.1016/j.energy.2022.126439.
  • Venu, H., V. D. Raju, S. Lingesan, and M. E. M. Soudagar. 2021. Influence of Al2O3 nano additives in ternary fuel (diesel-biodiesel ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics. Energy 215:119091. doi:10.1016/j.energy.2020.119091.
  • Wang, Z., F. Zhang, Y. Xia, D. Wang, Y. Xu, and G. Du. 2021. Combustion phase of a diesel/natural gas dual fuel engine under various pilot diesel injection timings. Fuel 289:119869. doi:10.1016/j.fuel.2020.119869.
  • Wei, J., C. He, C. Fan, S. Pan, M. Wei, and C. Wang. 2021. Comparison in the effects of alumina, ceria and silica nanoparticle additives on the combustion and emission characteristics of a modern methanol-diesel dual-fuel CI engine. Energy Conversion and Management 238:114121. doi:10.1016/j.enconman.2021.114121.
  • Xia, C., K. Brindhadevi, A. Elfasakhany, M. Alsehli, and S. Tola. 2021. Performance, combustion and emission analysis of castor oil biodiesel blends enriched with nanoadditives and hydrogen fuel using CI engine. Fuel 306:121541. doi:10.1016/j.fuel.2021.121541.
  • Xu, Z., X. Duan, Y. Liu, B. Deng, and J. Liu. 2020. Spray combustion and soot formation characteristics of the acetone-butanol ethanol/diesel blends under diesel engine-relevant conditions. Fuel 280:118483. doi:10.1016/j.fuel.2020.118483.
  • Yaman, H., M. K. Yesilyurt, and S. Uslu. 2022. Simultaneous optimization of multiple engine parameters of a 1-heptanol/gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach. Energy 238:122019. doi:10.1016/j.energy.2021.122019.
  • Yan, J., S. Gao, W. Zhao, and T. H. Lee. 2021. Study of combustion and emission characteristics of a diesel engine fueled with diesel, butanol-diesel and hexanol-diesel mixtures under low intake pressure conditions. Energy Conversion and Management 243:114273. doi:10.1016/j.enconman.2021.114273.
  • Yesilyurt, M. K., and Cakmak, A. 2021. An extensive investigation of utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI engine – the effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characteristics. Fuel 305:121453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.