600
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Passive thermal management system of lithium-ion batteries employing metal foam/ pcm composite for the development of electric vehicles

, , & ORCID Icon
Pages 505-522 | Received 10 Jun 2022, Accepted 29 Nov 2022, Published online: 29 Jan 2023

References

  • Bhattacharya, A., V. V. Calmidi, and R. L. Mahajan. 2002. Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer 45 (5):1017–31. doi:10.1016/S0017-9310(01)00220-4.
  • Fathabadi, H. 2014. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles. Energy 70:529–38. doi:10.1016/j.energy.2014.04.046.
  • Hussain, A., C. Y. Tso, and C. Y. H. Chao. 2016. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. Energy 115:209–18. doi:10.1016/j.energy.2016.09.008.
  • Khateeb, S. A., S. Amiruddin, M. Farid, J. R. Selman, and S. Al-Hallaj. 2005a. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation. Journal of Power Sources 142 (1–2):345–53. doi:10.1016/j.jpowsour.2004.09.033.
  • Khateeb, S. A., S. Amiruddin, M. Farid, J. R. Selman, and S. Al-Hallaj. 2005b. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation. Journal of Power Sources 142 (1–2):345–53. doi:10.1016/j.jpowsour.2004.09.033.
  • Lafdi, K., O. Mesalhy, and S. Shaikh. 2007. Experimental study on the influence of foam porosity and pore size on the melting of phase change materials. Journal of Applied Physics 102 (8):083549. doi:10.1063/1.2802183.
  • Ling, Z., J. Chen, X. Fang, Z. Zhang, T. Xu, X. Gao, and S. Wang. 2014. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Applied Energy 121:104–13. doi:10.1016/j.apenergy.2014.01.075.
  • Li, W. Q., Z. G. Qu, Y. L. He, and Y. B. Tao. 2014. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. Journal of Power Sources 255:9–15. doi:10.1016/j.jpowsour.2014.01.006.
  • Li, W. Q., Z. G. Qu, Y. L. He, and T. WenQuan. 2012. Tao, Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin. Applied Thermal Engineering 37:1–9. doi:10.1016/j.applthermaleng.2011.11.001.
  • Lu, L., X. Han, J. Li, J. Hua, and M. Ouyang. 2013. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources 226:272–88. doi:10.1016/j.jpowsour.2012.10.060.
  • Maine, E., and M. F. Ashby. 2000. Cost Estimation and the Viability of Metal Foams. Advanced Engineering Materials 2 (4):205–09. doi:10.1002/(SICI)1527-2648(200004)2:4<205:AID-ADEM205>3.0.CO;2-J.
  • Mills, A., and S. Al-Hallaj. 2005. Simulation of passive thermal management system for lithium-ion battery packs. Journal of Power Sources 141 (2):307–15. doi:10.1016/j.jpowsour.2004.09.025.
  • Peng, P., Y. Wang, and F. Jiang. 2022. Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management. Applied Thermal Engineering 209 (November 2021):118293. doi:10.1016/j.applthermaleng.2022.118293.
  • Py, X., R. Olives, and S. Mauran. 2001. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer 44 (14):2727–37. doi:10.1016/S0017-9310(00)00309-4.
  • Qu, Z. G., W. Q. Li, and W. Q. Tao. 2014. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material. International Journal of Hydrogen Energy 39 (8):3904–13. doi:10.1016/j.ijhydene.2013.12.136.
  • Rao, Z., and S. Wang. 2011. A review of power battery thermal energy management, Renew. Renewable and Sustainable Energy Reviews 15 (9):4554–71. doi:10.1016/j.rser.2011.07.096.
  • Sabbah, R., R. Kizilel, J. R. Selman, and S. Al-Hallaj. 2008. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. Journal of Power Sources 182 (2):630–38. doi:10.1016/j.jpowsour.2008.03.082.
  • Samimi, F., A. Babapoor, M. Azizi, and G. Karimi. 2016. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy 96:355–71. doi:10.1016/j.energy.2015.12.064.
  • Sari, A., and A. Karaipekli. 2007. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering 27 (8–9):1271–77. doi:10.1016/j.applthermaleng.2006.11.004.
  • Saw, L. H., Y. Ye, and A. A. O. Tay. 2014. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles. Applied Energy 131:97–107. doi:10.1016/j.apenergy.2014.06.016.
  • Singh, L. K., G. Mishra, A. K. Sharma, and A. K. Gupta. 2021. A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling. International Journal of Refrigeration 131 (July):218–34. doi:10.1016/j.ijrefrig.2021.07.031.
  • Somasundaram, K., E. Birgersson, and A. S. Mujumdar. 2012. Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery. Journal of Power Sources 203:84–96. doi:10.1016/j.jpowsour.2011.11.075.
  • Tong, W., K. Somasundaram, E. Birgersson, A. S. Mujumdar, and C. Yap. 2015. Numerical investigation of water cooling for a lithium-ion bipolar battery pack. International Journal of Thermal Sciences 94:259–69. doi:10.1016/j.ijthermalsci.2015.03.005.
  • Väyrynen, A., and J. Salminen. 2012. Lithium ion battery production. The Journal of Chemical Thermodynamics 46:80–85. doi:10.1016/j.jct.2011.09.005.
  • Wang, C., T. Lin, N. Li, and H. Zheng. 2016. Heat transfer enhancement of phase change composite material: Copper foam/paraffin, Renew. Energy 96:960–65. doi:10.1016/j.renene.2016.04.039.
  • Wang, C., H. Xi, and M. Wang. 2022. Investigation on forced air-cooling strategy of battery thermal management system considering the inconsistency of battery cells. Applied Thermal Engineering 214 (January):118841. doi:10.1016/j.applthermaleng.2022.118841.
  • Wang, Z., Z. Zhang, L. Jia, and L. Yang. 2015. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Applied Thermal Engineering 78:428–36. doi:10.1016/j.applthermaleng.2015.01.009.
  • Xiao, X., P. Zhang, and M. Li. 2013. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Applied Energy 112:1357–66. doi:10.1016/j.apenergy.2013.04.050.
  • Yang, Y. 2022. Review of the Use of the Carbon-Based Phase Change Material Composites in Battery Thermal Management for Electric Vehicles. In Phase Change Materials - Technology and Applications, Vol. 1, Ch. 4, ed. K. R. D. Manish. IntechOpen: Rijeka. doi:10.5772/intechopen.107274.
  • Yi, F., E. Jiaqiang, B. Zhang, H. Zuo, K. Wei, J. Chen, H. Zhu, H. Zhu, and Y. Deng. 2022. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method. Renewable Energy 181:472–89. doi:10.1016/j.renene.2021.09.073.
  • Yuan, X., A. Tang, C. Shan, Z. Liu, and J. Li. 2020. Experimental investigation on thermal performance of a battery liquid cooling structure coupled with heat pipe. Journal of Energy Storage 32 (October):101984. doi:10.1016/j.est.2020.101984.
  • Yue, Q. L., C. X. He, J. Sun, J. B. Xu, and T. S. Zhao. 2022. A passive thermal management system with thermally enhanced water adsorbents for lithium-ion batteries powering electric vehicles. Applied Thermal Engineering 207 (January):118156. doi:https://doi.org/10.1016/j.applthermaleng.2022.118156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.