249
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultrasonically synthesized MgZnO nanoparticles for enhanced piezo-photocatalysis and MgZnO/p-Si heterojunction diode characteristics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 762-776 | Received 12 Oct 2022, Accepted 22 Dec 2022, Published online: 07 Feb 2023

References

  • Adam, R. E., H. Alnoor, G. Pozina, X. Liu, M. Willander, and O. Nur. 2020. Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light. Solid State Sciences 99:106053. doi:10.1016/j.solidstatesciences.2019.106053.
  • Afre Rakesh, A., N. Sharma, M. Sharon, and M. Sharon. 2018. Transparent conducting oxide films for various applications: A review. Reviews on Advanced Materials Science 53 (1):79–89. doi:10.1515/rams-2018-0006.
  • Ahmed Anas, A., T. F. Qahtan, M. R. Hashim, A. T. Nomaan, N. H. Al-Hardan, and M. Rashid. 2022. Eco-friendly ultrafast self-powered p-Si/n-ZnO photodetector enhanced by photovoltaic-pyroelectric coupling effect. Ceramics International 48 (11):16142–55. doi:10.1016/j.ceramint.2022.02.162.
  • Albargi, H., H. Y. Ammar, H. M. Badran, H. Algadi, and A. Umar. 2021. P-CuO/n-ZnO heterojunction structure for the selective detection of hydrogen sulphide and sulphur dioxide gases: A theoretical approach. Coatings 11 (10):1200. doi:10.3390/coatings11101200.
  • Annathurai, S., S. Chidambaram, B. Baskaran, and G. K. D. Prasanna Venkatesan. 2019. Green synthesis and electrical properties of p-CuO/n-ZnO heterojunction diodes. Journal of Inorganic and Organometallic Polymers and Materials 29 (2):535–40. doi:10.1007/s10904-018-1026-1.
  • Asadi, A., N. Daglioglu, T. Hasani, and N. Farhadian. 2022. Construction of Mg-doped ZnO/g-C3N4@ ZIF-8 multi-component catalyst with superior catalytic performance for the degradation of illicit drug under visible light. Colloids and Surfaces A, Physicochemical and Engineering Aspects 650:129536. doi:10.1016/j.colsurfa.2022.129536.
  • Caglar, Y., K. Görgün, S. Ilican, M. Caglar, and F. Yakuphanoğlu. 2016. Magnesium-doped zinc oxide nanorod–nanotube semiconductor/p-silicon heterojunction diodes. Applied Physics A 122 (8):1–12. doi:10.1007/s00339-016-0251-0.
  • Chen, W., W. Fan, Q. Wang, Y. Xichen, Y. Luo, W. Wang, R. Lei, and Y. Li. 2022. A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy 103:107769. doi:10.1016/j.nanoen.2022.107769.
  • Cheng, C., W. Zhang, X. Chen, S. Peng, and L. Yuexiang. 2022. Strategies for improving photoelectrochemical water splitting performance of Si‐based electrodes. Energy Science & Engineering 10 (4):1526–43. doi:10.1002/ese3.1087.
  • Chopra, K. L., S. Major, and D. K. Pandya. 1983. Transparent conductors—a status review. Thin Solid Films 102 (1):1–46. doi:10.1016/0040-6090(83)90256-0.
  • Çolak, H., and E. Karaköse. 2019. Synthesis and structural, electrical, optical properties of Lu3±doped ZnO nanorods. Materials Science in Semiconductor Processing 101:230–37.
  • Das, H. S., R. Das, P. K. Nandi, S. Biring, and S. Kumar Maity. 2021. Influence of Ga-doped transparent conducting ZnO thin film for efficiency enhancement in organic light-emitting diode applications. Applied Physics A 127 (4):1–7. doi:10.1007/s00339-021-04339-6.
  • Dhanaselvam, P. S., D. S. Kumar, V. N. Ramakrishnan, K. Ramkumar, and N. B. Balamurugan. 2022. Pressure sensors using Si/ZnO Heterojunction Diode. Silicon 14 (8):4121–27. doi:10.1007/s12633-021-01177-2.
  • Dumrongrojthanath, P., A. Phuruangrat, S. Thongtem, and T. Thongtem. 2021. Photocatalysis of Cd-doped ZnO synthesized with precipitation method. Rare Metals 40 (3):537–46. doi:10.1007/s12598-019-01283-6.
  • Etacheri, V., R. Roshan, and V. Kumar. 2012. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Applied Materials & Interfaces 4 (5):2717–25. doi:10.1021/am300359h.
  • Goktas, S., and A. Goktas. 2021. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. Journal of Alloys and Compounds 863:158734. doi:10.1016/j.jallcom.2021.158734.
  • Goktas, A., M. Sait, A. Tumbul, and A. Kilic. 2022. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. Journal of Alloys and Compounds 893:162334. doi:10.1016/j.jallcom.2021.162334.
  • Goktas, A., A. Tumbul, Z. Aba, and M. J. T. S. F. Durgun. 2019. Mg doping levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO: Mg thin films and Al/ZnO: Mg/p-Si/Al heterojunction diode. Thin Solid Films 680:20–30. doi:10.1016/j.tsf.2019.04.024.
  • Gotipamul Pavan, P., G. Vattikondala, K. Dilly Rajan, S. Khanna, M. Rathinam, and S. Chidambaram. 2022. Impact of piezoelectric effect on the heterogeneous visible photocatalysis of g-C3N4/Ag/ZnO tricomponent. Chemosphere 287:132298. doi:10.1016/j.chemosphere.2021.132298.
  • Gurylev, V., and T. P. Perng. 2021. Defect engineering of ZnO: Review on oxygen and zinc vacancies. Journal of the European Ceramic Society 41 (10):4977–96. doi:10.1016/j.jeurceramsoc.2021.03.031.
  • Islam Muhammad, R., and M. G. Azam. 2021. Enhanced photocatalytic activity of Mg-doped ZnO thin films prepared by sol–gel method. Surface Engineering 37 (6):775–83. doi:10.1080/02670844.2020.1801143.
  • Kang, Y., F. Yu, L. Zhang, W. Wang, L. Chen, and Y. Li. 2021. Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 360:115544. doi:10.1016/j.ssi.2020.115544.
  • Kılınç, N., L. Arda, S. Öztürk, and Z. Z. Öztürk. 2010. Structure and electrical properties of Mg‐doped ZnO nanoparticles. Crystal Research and Technology 45 (5):529–38. doi:10.1002/crat.200900662.
  • Li, Y., Y. Fangzhou, L. Guangyuan, L. Ming, and L. Yicheng. 2022. MgZnO High‐Voltage transparent thin‐film transistors built on glass. physica status solidi (a) 219 (18):2200313. doi:10.1002/pssa.202200313.
  • Lu, X., X. Guo, W. FengchaoSu, S. Zheng, L. Jun, L. Wenhua, Y.P. Jiang, Z. Tang, X.G. Tang, and X. -G. Tang. 2022. Photoelectric characteristics of Al-doped ZnO/p-Si diode prepared by radio frequency magnetron sputtering. Journal of Physics D: Applied Physics 55 (48):485101. doi:10.1088/1361-6463/ac95a1.
  • Mohammed, Y. H. 2019. Fabrication of n-MgZnO/p-Si heterojunction diode: Role of magnesium doping. Superlattices and Microstructures 131:104–16. doi:10.1016/j.spmi.2019.06.001.
  • Nie, Q., J. M. YafanXie, J. Wang, G. Zhang, and G. Zhang. 2020. High piezo–catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. Journal of Cleaner Production 242:118532. doi:10.1016/j.jclepro.2019.118532.
  • Okeke, I. S., K. K. Agwu, A. A. Ubachukwu, I. G. Madiba, M. Maaza, G. M. Whyte, and F. I. Ezema. 2021. Impact of particle size and surface defects on antibacterial and photocatalytic activities of undoped and Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process. Vacuum 187:110110. doi:10.1016/j.vacuum.2021.110110.
  • Oliveira, A. G., J. De Lara Andrade, M. C. Montanha, C. Y. L. Ogawa, T. K. F. de Souza Freitas, J. Carla Garcia Moraes, F. Sato, S. M. Lima, L. H. da Cunha Andrade, A. A. W. Hechenleitner, et al. 2021. Wastewater treatment using Mg-doped ZnO nano-semiconductors: A study of their potential use in environmental remediation. Journal of Photochemistry and Photobiology A Chemistry 407:113078. doi:10.1016/j.jphotochem.2020.113078.
  • Parvizi, E., R. Tayebee, E. Koushki, B. MojtabaFattahiabdizadeh, P. Audebert, L. Galmiche, and L. Galmiche. 2019. Photocatalytic efficacy of supported tetrazine on MgZnO nanoparticles for the heterogeneous photodegradation of methylene blue and ciprofloxacin. RSC advances 9 (41):23818–31. doi:10.1039/C9RA04702F.
  • Patil, V. L., D. S. Dalavi, S. B. Dhavale, S. A. Vanalakar, N. L. Tarwal, A. S. Kalekar, J. H. Kim, and P. S. Patil. 2022. Indium doped ZnO nanorods for chemiresistive NO2 gas sensors. New Journal of Chemistry 46 (16):7588–97. doi:10.1039/D2NJ00114D.
  • Pavan Gotipamul, P., G. Vattikondala, K. Dilly Rajan, S. Khanna, M. Rathinam, and S. Chidambaram. 2022. Impact of piezoelectric effect on the heterogeneous visible photocatalysis of g-C3N4/Ag/ZnO tricomponent. Chemosphere 287:132298. doi:10.1016/j.chemosphere.2021.132298.
  • Peng, F., L. Haozhen, X. Wanxin, H. Min, L. Zhenxuan, L. Feihu, X. Huang, W. Wang, and L. Chunhua. 2021. A discovery of field-controlling selective adsorption for micro ZnO rods with unexpected piezoelectric catalytic performance. Applied Surface Science 545:149032. doi:10.1016/j.apsusc.2021.149032.
  • Pradeev, R., K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z. Zaman Chowdhury, M. Johan, R. Bin, F. Abdul Aziz, F. R. Rahman, and R. ThamizSelvi. 2018. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale research letters 13 (1):1–13. doi:10.1186/s11671-018-2643-x.
  • Qiao, F., K. Sun, H. Chu, J. Wang, Y. Xie, L. Chen, and T. Yan. 2022. Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications. Battery Energy 1 (1):20210008. doi:10.1002/bte2.20210008.
  • Rajan, K. D., D. Srinivasan, P. P. Gotipamul, S. Khanna, S. Chidambaram, and M. Rathinam. 2022. Design of a novel ZnBi2O4/Bi2O3 type-II photo-catalyst via short term hydrothermal for enhanced degradation of organic pollutants. Materials Science and Engineering: B 285:115929. doi:10.1016/j.mseb.2022.115929.
  • Rana, A. U. H. S., and H.S. Kim. 2017. NH4OH Treatment for an optimum morphological trade-off to hydrothermal Ga-doped n-ZnO/p-Si heterostructure characteristics. Materials 11 (1):37. doi:10.3390/ma11010037.
  • Sakthi, P., J. Uma, C. Siva, and B. Balraj. 2022. Sonochemical synthesis of interconnected SnS nanocrystals for supercapacitor and solar-physical conversion applications. Optical Materials 132:112759. doi:10.1016/j.optmat.2022.112759.
  • Sarica, E., I. Gunes, I. Akyuz, V. Bilgin, and K. Erturk. 2021. Sol-gel derived ZnO: Sn thin films and fabrication of n-ZnO: Sn/p-Si heterostructure. Optical Materials 118:111283. doi:10.1016/j.optmat.2021.111283.
  • Singh, S. K., and P. Hazra. 2018. Performance analysis of undoped and Mg-doped ZnO/p-Si heterojunction diodes grown by sol–gel technique. Journal of Materials Science: Materials in Electronics 29 (6):5213–23. doi:10.1007/s10854-017-8486-x.
  • Soylu, M., and O. Savas. 2015. Electrical and optical properties of ZnO/Si heterojunctions as a function of the Mg dopant content. Materials Science in Semiconductor Processing 29:76–82. doi:10.1016/j.mssp.2013.09.008.
  • Xue, L., W. Fan, Y. Yang, K. Dong, C. Liu, Y. Sun, C. Zhang, W. Chen, R. Lei, K. Rong, et al. 2021. A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters. Advanced Fiber Materials. 3(4):239–50. doi:10.1007/s42765-021-00081-z.
  • Yajun, W., Z. Xiaoru, D. Libing, W. Fenggui, N. Hongru, G. Wenrui, and A. Amjed. 2015. Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Materials Science in Semiconductor Processing 29:372–79. doi:10.1016/j.mssp.2014.07.034.
  • Yang, Q., X. Zhang, X. Zhou, and S. Liang. 2017. Growth of Ga-doped ZnO films by thermal oxidation with gallium and their optical properties. AIP advances 7 (5):055106. doi:10.1063/1.4983483.
  • Young, S.J., S.J. Chang, and Y.H. Liu. 2022. Advanced nanomaterials for applications in photonic and sensor devices. Journal of Nanomaterials 2022:1–2. doi:10.1155/2022/9895385.
  • Yousefi, R., J. Beheshtian, S. M. Seyed‐talebi, H. R. Azimi, and F. Jamali‐sheini. 2018. Experimental and theoretical study of enhanced photocatalytic activity of Mg‐doped ZnO NPs and ZnO/rGO nanocomposites. Chemistry–An Asian Journal 13 (2):194–203. doi:10.1002/asia.201701423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.