151
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of the sudden change of ambient atmosphere on free radicals in coal body by CO2 fire prevention gas injection

, ORCID Icon, , &
Pages 829-840 | Received 20 Jun 2022, Accepted 21 Nov 2022, Published online: 07 Feb 2023

References

  • Cai, J. W., S. Q. Yang, W. C. Zheng, W. X. Song, and R. Gupta. 2021. Dissect the capacity of low-temperature oxidation of coal with different metamorphic degrees. Fuel 292. doi:10.1016/j.fuel.2021.120256.
  • Chen, L., X. Qi, Y. Zhang, H. Xin, and Z. Liang. 2021. Reaction activity and mechanism of R-3-CH structure oxidation in coal self-heating. Fuel 290:119797. doi:10.1016/j.fuel.2020.119797.
  • Deng, J., L. F. Ren, L. Ma, C. K. Lei, G. M. Wei, and W. F. Wang. 2018. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal. Thermochimica Acta 667:102–10. doi:10.1016/j.tca.2018.07.012.
  • Gao, J., M. Chang, and J. Shen. 2017. Comparison of bituminous coal apparent activation energy in different heating rates and oxygen concentrations based on thermo gravimetric analysis. Journal of Thermal Analysis and Calorimetry 130 (2):1181–89. doi:10.1007/s10973-017-6487-x.
  • He, W. J., Z. Y. Liu, Q. Y. Liu, L. Shi, X. G. Shi, J. F. Wu, and X. J. Guo. 2017. Behavior of radicals during solvent extraction of three low rank bituminous coals. Fuel Processing Technology 156:221–27. doi:10.1016/j.fuproc.2016.10.029.
  • Jiang, X. Y., S. Q. Yang, B. Z. Zhou, Z. S. Hou, and C. S. Zhang. 2022. Effect of gas atmosphere change on radical reaction and indicator gas release during coal oxidation. Fuel 312. doi:10.1016/j.fuel.2021.122960.
  • Kus, J., M. Misz-Kennan, and Iccp. 2017. Coal weathering and laboratory (artificial) coal oxidation. International Journal of Coal Geology 171:12–36. doi:10.1016/j.coal.2016.11.016.
  • Lei, B., B. He, B. Xiao, P. Du, and B. Wu. 2020. Comparative study of single inert gas in confined space inhibiting open flame coal combustion. Fuel 265. doi:10.1016/j.fuel.2019.116976.
  • Levi, G., O. Senneca, M. Causa, P. Salatino, P. Lacovig, and S. Lizzit. 2015. Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS. Carbon 90:181–96. doi:10.1016/j.carbon.2015.04.003.
  • Li, Z., B. Kong, A. Wei, Y. Yang, Y. Zhou, and L. Zhang. 2016. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environmental Science and Pollution Research 23 (23):23593–605. doi:10.1007/s11356-016-7589-x.
  • Li, J., Z. Li, Y. Yang, Y. Duan, J. Xu, and R. Gao. 2019. Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures. Energy 185:28–38. doi:10.1016/j.energy.2019.07.041.
  • Li, J. H., Z. H. Li, Y. L. Yang, B. Kong, and C. J. Wang. 2018. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Processing Technology 171:350–60. doi:10.1016/j.fuproc.2017.09.027.
  • Li, J., Z. Li, Y. Yang, and X. Zhang. 2019. Study on the generation of active sites during low-temperature pyrolysis of coal and its influence on coal spontaneous combustion. Fuel 241:283–96. doi:10.1016/j.fuel.2018.12.034.
  • Liu, J. X., X. M. Jiang, J. Shen, and H. Zhang. 2014. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics. Advanced Powder Technology 25 (3):916–25. doi:10.1016/j.apt.2014.01.021.
  • Liu, H., and F. Wang. 2019. Research on N2-inhibitor-water mist fire prevention and extinguishing technology and equipment in coal mine goaf. Plos One 14 (9):e0222003. doi:10.1371/journal.pone.0222003.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305. doi:10.1016/j.fuel.2021.121626.
  • Lu, W., X. Sun, L. Gao, X. Hu, H. Song, and B. Kong. 2022. Study on the characteristics and mechanism of DL-malic acid in inhibiting spontaneous combustion of lignite and bituminous coal. Fuel 308. doi:10.1016/j.fuel.2021.122012.
  • Ma, L., R. Guo, M. Wu, W. Wang, L. Ren, and G. Wei. 2020. Determination on the hazard zone of spontaneous coal combustion in the adjacent gob of different mining stages. Process Safety and Environmental Protection 142:370–79. doi:10.1016/j.psep.2020.06.035.
  • Qi, X., L. Chen, L. Zhang, C. Bai, H. Xin, and Z. Rao. 2019. In situ FTIR study on real-time changes of active groups during lignite reaction under low oxygen concentration conditions. Journal of the Energy Institute 92 (5):1557–66. doi:10.1016/j.joei.2018.07.018.
  • Qi, X., Y. Li, L. Chen, J. Tang, H. Xin, and Z. Liang. 2020. Reaction mechanism of aldehyde groups during coal self-heating. ACS Omega 5 (36):23184–92. doi:10.1021/acsomega.0c02952.
  • Su, H. T., F. B. Zhou, J. S. Li, and H. N. Qi. 2017. Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China. Fuel 202:446–54. doi:10.1016/j.fuel.2017.04.055.
  • Tang, Y., and H. Wang. 2019. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite. Process Safety and Environmental Protection 124:143–50. doi:10.1016/j.psep.2019.01.031.
  • Tang, Z., G. Xu, S. Yang, J. Deng, Q. Xu, and P. Chang. 2021. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties. Powder Technology 384:258–66. doi:10.1016/j.powtec.2021.02.024.
  • Wang, K., P. Gao, W. Sun, H. Fan, Y. He, and T. Han. 2020. Thermal behavior of the low-temperature secondary oxidation of coal under different pre-oxidation temperatures. Combustion Science and Technology 194 (8):1712–29. doi:10.1080/00102202.2020.1828378.
  • Wang, Y. X., W. F. Huang, Z. H. Li, L. P. Chang, D. F. Li, R. C. Chen, Q. Lv, Y. X. Zhao, and B. L. Lv. 2021. Small furnace for the small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization of the high temperature carbonization of coal. Instrumentation Science & Technology 49 (4):445–56. doi:10.1080/10739149.2021.1881538.
  • Wang, K., L. H. Hu, J. Deng, and Y. N. Zhang. 2023. Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time. Energy 262. doi:10.1016/j.energy.2022.125397.
  • Wang, C. P., Y. Xiao, Q. W. Li, J. Deng, and K. Wang. 2018. Free radicals, apparent activation energy, and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi. International Journal of Mining Science and Technology 28 (3):469–75. doi:10.1016/j.ijmst.2018.04.007.
  • Wu, Z. Y., S. S. Hu, S. G. Jiang, X. J. He, H. Shao, K. Wang, D. Q. Fan, and W. R. Li. 2018. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor. Journal of Loss Prevention in the Process Industries 56:272–77. doi:10.1016/j.jlp.2018.09.012.
  • Xi, Z. L., K. Xi, L. P. Lu, and M. M. Zhang. 2023. Study on oxidation characteristics and conversion of sulfur-containing model compounds in coal. Fuel 331. doi:10.1016/j.fuel.2022.125756.
  • Xu, Q., S. Yang, W. Yang, Z. Tang, X. Hu, W. Song, B. Zhou, and K. Yang. 2021. Secondary oxidation of crushed coal based on free radicals and active groups. Fuel 290. doi:10.1016/j.fuel.2020.120051.
  • Yang, Z. C., Q. Teng, Y. Q. Han, G. Y. Zhang, and S. H. Fang. 2023. New insights into the combination of Fe(III) and xanthan gum in dewatering of coal slurry: Molecular self-assembly. Fuel 332. doi:10.1016/j.fuel.2022.126205.
  • Zhang, Y., Y. Liu, X. Shi, C. Yang, W. Wang, and Y. Li. 2018. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76. doi:10.1016/j.fuel.2018.06.052.
  • Zhou, Q. Q., Q. Y. Liu, L. Shi, Y. X. Yan, and Z. Y. Liu. 2017. Behaviors of coking and radicals during reaction of volatiles generated from fixed-bed pyrolysis of a lignite and a subbituminous coal. Fuel Processing Technology 161:304–10. doi:10.1016/j.fuproc.2017.01.040.
  • Zhou, X., Y. Yang, K. Zheng, G. Miao, M. Wang, and P. Li. 2021. Study on the spontaneous combustion characteristics and prevention technology of coal seam in overlying close goaf. Combustion Science and Technology 194:2233–54. doi:10.1080/00102202.2020.1863953.
  • Zhu, H., Y. Huo, S. Fang, X. He, W. Wang, and Y. Zhang. 2020. Quantum chemical calculation of original aldehyde groups reaction mechanism in coal spontaneous combustion. Energy & Fuels 34 (11):14776–85. doi:10.1021/acs.energyfuels.0c02474.
  • Zhu, J., Z. Zhu, H. Zhang, H. Lu, and Y. Qiu. 2019. Calcined CoAl-layered double hydroxide as a heterogeneous catalyst for the degradation of acetaminophen and rhodamine B: Activity, stability, and mechanism. Environmental Science and Pollution Research 26 (32):33329–40. doi:10.1007/s11356-019-06390-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.