241
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A study of polyethylene glycol terephthalate (PET) pyrolysis mechanisms using reactive molecular dynamic simulations

&
Pages 1079-1090 | Received 05 May 2022, Accepted 15 Jan 2023, Published online: 10 Feb 2023

References

  • Ahmed, I. I., and A. K. Gupta. 2009. Hydrogen production from polystyrene pyrolysis and gasification: Characteristics and kinetics. International Journal of Hydrogen Energy 34:6253–64. doi:10.1016/j.ijhydene.2009.05.046.
  • Alam, S. S., A. H. Khan, and N. A. Khan. 2022. Plastic waste management via thermochemical conversion of plastics into fuel: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44:1–20. doi:10.1080/15567036.2022.2097750.
  • Ansah, E., L. Wang, and A. Shahbazi. 2016. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste component. Waste Management 56:196–206. doi:10.1016/j.wasman.2016.06.015.
  • Arias, J. J. R., and W. Thielemans. 2021. Instantaneous hydrolysis of PET bottles: An efficient pathway for the chemical recycling of condensation polymers. Green Chemistry 23:9945–56. doi:10.1039/D1GC02896K.
  • Berendsen, H. J. C., J. P. M. Postma, W. F. V. Gunsteren, A. Dinola, and J. R. Haak. 1984. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics 81:3684–90. doi:10.1063/1.448118.
  • Brems, A., J. Baeyens, C. Vandecasteele, and R. Dewil. 2011. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. Journal of the Air & Waste Management Association 61:721–31. doi:10.3155/1047-3289.61.7.721.
  • Çit, İ., A. Sınağ, T. Yumak, S. Uçar, Z. Mısırlıoğlu, and M. Canel. 2010. Comparative pyrolysis of polyolefins (PP and LDPE) and PET. Polymer Bulletin 64:817–34. doi:10.1007/s00289-009-0225-x.
  • Cortazar, M., N. Gao, C. Quan, M. A. Suarez, G. Lopez, S. Orozco, L. Santamaria, M. Amutio, and M. Olazar. 2022. Analysis of hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. Fuel Processing Technology 225:107044. doi:10.1016/j.fuproc.2021.107044.
  • Dimitrov, N., L. K. Krehula, A. P. Siročić, and Z. Hrnjak-Murgić. 2013. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polymer Degradation and Stability 98:972–79. doi:10.1016/j.polymdegradstab.2013.02.013.
  • Duin, A. C. T., S. Dasgupta, F. Lorant, and W. A. Goddard. 2001. ReaxFF: A reactive force field for hydrocarbons. The Journal of Physical Chemistry: A 105:9396–409. doi:10.1021/jp004368u.
  • He, Q., C. Cheng, X. Zhang, Q. Guo, L. Ding, A. Raheem, and G. Yu. 2022. Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis. Energy 244:123101. doi:10.1016/j.energy.2022.123101.
  • Hong, D., P. Gao, and C. Wang. 2022. A comprehensive understanding of the synergistic effect during co-pyrolysis of polyvinyl chloride (PVC) and coal. Energy 239:122258. doi:10.1016/j.energy.2021.122258.
  • Hong, D., P. Li, T. Si, and X. Guo. 2021. ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene. Energy 218:119553. doi:10.1016/j.energy.2020.119553.
  • Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law. 2015. Plastic waste inputs from land into the ocean. Science 347:768–71. doi:10.1126/science.1260352.
  • Jia, H., H. Ben, Y. Luo, and R. Wang. 2020. Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride. Polymers 12:705. doi:10.3390/polym12030705.
  • Kedharnath, A., R. Kapoor, and A. Sarkar. 2021. Classical molecular dynamics simulations of the deformation of metals under uniaxial monotonic loading: A review. Computers & Structures 254:106614. doi:10.1016/j.compstruc.2021.106614.
  • Kusenberg, M., A. Zayoud, M. Roosen, H. D. Thi, M. S. Abbas-Abadi, A. Eschenbacher, U. Kresovic, S. D. Meester, and K. M. V. Geem. 2022. A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. Fuel Processing Technology 227:107090. doi:10.1016/j.fuproc.2021.107090.
  • Liu, Q., S. Liu, Y. Lv, P. Hu, Y. Huang, M. Kong, and G. Li. 2021. Atomic-scale insight into the pyrolysis of polycarbonate by ReaxFF-based reactive molecular dynamics simulation. Fuel 287:119484. doi:10.1016/j.fuel.2020.119484.
  • Liu, X., X. Li, J. Liu, Z. Wang, B. Kong, X. Gong, X. Yang, W. Lin, and L. Guo. 2014. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics. Polymer Degradation and Stability 104:62–70. doi:10.1016/j.polymdegradstab.2014.03.022.
  • Mehran, M. T., S. R. Naqvi, M. A. I. Haider, M. Saeed, M. Shahbaz, and T. Al-Ansari. 2021. Global plastic waste management strategies (Technical and behavioral) during and after COVID-19 pandemic for cleaner global urban life. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43:1–10. doi:10.1080/15567036.2020.1869869.
  • Niksiar, A., A. H. Faramarzi, and M. Sohrabi. 2015. Kinetic study of polyethylene terephthalate (PET) pyrolysis in a spouted bed reactor. Journal of Analytical and Applied Pyrolysis 113:419–25. doi:10.1016/j.jaap.2015.03.002.
  • Sarkisov, L., and A. Harrison. 2011. Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation 37:1248–57. doi:10.1080/08927022.2011.592832.
  • Supriyanto, P. Y., T. Richards, and T. Richards. 2021. Gaseous products from primary reactions of fast plastic pyrolysis. Journal of Analytical and Applied Pyrolysis 158:105248. doi:10.1016/j.jaap.2021.105248.
  • Wang, Y., Y. Li, C. Zhang, L. Yang, X. Fan, and L. Chu. 2021. A study on co-pyrolysis mechanisms of biomass and polyethylene via ReaxFF molecular dynamic simulation and density functional theory. Process Safety and Environmental Protection 150:22–35. doi:10.1016/j.psep.2021.04.002.
  • Yu, J., L. Sun, C. Ma, Y. Qiao, and H. Yao. 2016. Thermal degradation of PVC: A review. Waste Management 48:300–14. doi:10.1016/j.wasman.2015.11.041.
  • Zheng, M., X. X. Li, J. Liu, and L. Guo. 2013. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics. Energy & Fuels 27:2942–51. doi:10.1021/ef400143z.
  • Zhou, Z., X. Zhang, J. Zhou, J. Liu, and K. Cen. 2014. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36:158–66. doi:10.1080/15567036.2010.506477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.