217
Views
4
CrossRef citations to date
0
Altmetric
Review

Effect of mono/hybrid nanofluids and passive techniques on thermal performance of parabolic trough solar collector: A review

, &
Pages 1686-1709 | Received 22 Aug 2022, Accepted 03 Feb 2023, Published online: 27 Feb 2023

References

  • Abdulhamed, A. J., N. M. Adam, M. Z. A. Ab-Kadir, and A. A. Hairuddin. 2018. Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications. Renewable and Sustainable Energy Reviews 91:822–831. doi:10.1016/j.rser.2018.04.085.
  • Abidi, A., A. S. El-Shafay, M. Degani, K. Guedri, S. M. Sajadi, and M. Sharifpur. 2022. Improving the thermal-hydraulic performance of parabolic solar collectors using absorber tubes equipped with perforated twisted tape containing nanofluid. Sustainable Energy Technologies and Assessments 52:102099. doi:10.1016/j.seta.2022.102099.
  • Abubakr, M., H. Amein, B. M. Akoush, M. M. El-Bakry, and M. A. Hassan. 2020. An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nano fluids. Renewable Energy 157:130–49. doi:10.1016/j.renene.2020.04.160.
  • Ahmadi, M. H., A. Mirlohi, M. A. Nazari, and R. Ghasempour. 2018. A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids 265:181–88. doi:10.1016/j.molliq.2018.05.124.
  • Aissa, A., N. A. A. Qasem, A. Mourad, H. Laidoudi, O. Younis, K. Guedri, and A. Alazzam. 2023. A review of the enhancement of solar thermal collectors using nanofluids and turbulators. Applied Thermal Engineering 220:119663. doi:10.1016/j.applthermaleng.2022.119663.
  • Akbarzadeh, S., and M. S. Valipour. 2018. Heat transfer enhancement in parabolic trough collectors: A comprehensive review. Renewable and Sustainable Energy Reviews 92:198–218. doi:10.1016/j.rser.2018.04.093.
  • Akbarzadeh, S., and M. S. Valipour. 2020. Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube. Renewable Energy 155:735–47. doi:10.1016/j.renene.2020.03.127.
  • Akbarzadeh, S., and M. S. Valipour. 2021. The thermo-hydraulic performance of a parabolic trough collector with helically corrugated tube. Sustainable Energy Technologies and Assessments 44:101013. doi:10.1016/j.seta.2021.101013.
  • Allouhi, A., M. Benzakour Amine, R. Saidur, T. Kousksou, and A. Jamil. 2018. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications. Energy Conversion and Management 155:201–17. doi:10.1016/j.enconman.2017.10.059.
  • Al-Oran, O., A. A’saf, and F. Lezsovits. 2022. Experimental and modelling investigation on the effect of inserting ceria-based distilled water nanofluid on the thermal performance of parabolic trough collectors at the weather conditions of Amman: A case study. Energy Reports 8:4155–69. doi:10.1016/j.egyr.2022.03.030.
  • Alqarni, M. M., E. E. Mahmoud, E. A. Algehyne, A. M. El-Refaey, M. A. El-Shorbagy, and M. Ibrahim. 2021. Improvement of the thermal and hydraulic performance of parabolic trough collectors using hybrid nanofluids and novel turbulators with holes and ribs. Sustainable Energy Technologies and Assessments 47:101480. doi:10.1016/j.seta.2021.101480.
  • Al-Rashed, A. A. A. A., A. A. Alnaqi, and J. Alsarraf. 2021. Thermo-hydraulic and economic performance of a parabolic trough solar collector equipped with finned rod turbulator and filled with oil-based hybrid nanofluid. Journal of the Taiwan Institute of Chemical Engineers 124:192–204. doi:10.1016/j.jtice.2021.04.026.
  • Al-Sulaiman, F. A., and R. Saidur. 2018. Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renewable Energy 121:36–44.
  • Al-Waeli, A. H. A., K. Sopian, M. T. Chaichan, H. A. Kazem, A. Ibrahim, S. Mat, and M. Ha. 2017. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Conversion and Management 151:693–708. doi:10.1016/j.enconman.2017.09.032.
  • Arshad Ahmed, K., and E. Natarajan. 2019. Thermal performance enhancement in a parabolic trough receiver tube with internal toroidal rings: A numerical investigation. Applied Thermal Engineering 162:114224. doi:10.1016/j.applthermaleng.2019.114224.
  • Azizi, M., and R. Tabatabaeekoloor. 2023. Evaluation of mono and hybrid nano-fluids on energy and exergy parameters of a photovoltaic-thermal system equipped with an eccentric parabolic trough concentrator. Applied Thermal Engineering 223:119979. doi:10.1016/j.applthermaleng.2023.119979.
  • Bamisile, O., D. Cai, H. Adun, M. Adedeji, M. Dagbasi, F. Dika, and Q. Huang. 2022. A brief review and comparative evaluation of nanofluid application in solar parabolic trough and flat plate collectors. Energy Reports 8:156–66. doi:10.1016/j.egyr.2022.08.078.
  • Bellos, E., I. Daniil, and C. Tzivanidis. 2018. Multiple cylindrical inserts for parabolic trough solar collector. Applied Thermal Engineering 143:80–89. doi:10.1016/j.applthermaleng.2018.07.086.
  • Bellos, E., and C. Tzivanidis. 2018a. Investigation of a star flow insert in a parabolic trough solar collector. Applied Energy 224:86–102. doi:10.1016/j.apenergy.2018.04.099.
  • Bellos, E., and C. Tzivanidis. 2018b. Multi-objective optimization of a solar driven trigeneration system. Energy 149:47–62. doi:10.1016/j.energy.2018.02.054.
  • Bellos, E., and C. Tzivanidis. 2018c. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustainable Energy Technologies and Assessments 26:105–15. doi:10.1016/j.seta.2017.10.005.
  • Bellos, E., C. Tzivanidis, K. A. Antonopoulos, and G. Gkinis. 2016. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renewable Energy 94:213–22. doi:10.1016/j.renene.2016.03.062.
  • Bezaatpour, M., H. Rostamzadeh, and J. Bezaatpour. 2020. Hybridization of rotary absorber tube and magnetic fi eld inducer with nano fl uid for performance enhancement of parabolic trough solar collector. Journal of Cleaner Production 283:124565. doi:10.1016/j.jclepro.2020.124565.
  • Bhalla, V., V. Khullar, and H. Tyagi. 2018. Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy. Renewable Energy 140:62702.
  • Bierman, B., C. Treynor, J. O. Donnell, M. Lawrence, M. Chandra, A. Farver, P. V. Behrens, and W. Lindsay. 2014. Performance of an enclosed trough EOR system in South Oman. Energy Procedia 49:1269–78. doi:10.1016/j.egypro.2014.03.136.
  • Biswakarma, S., S. Roy, B. Das, and B. Kumar. 2020. Performance analysis of internally helically v-grooved absorber tubes using nano fl uid. Thermal Science and Engineering Progress 18:100538. doi:10.1016/j.tsep.2020.100538.
  • Bitam, E. W., Y. Demagh, A. A. Hachicha, H. Benmoussa, and Y. Kabar. 2018. Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology. Applied Energy 218:494–510. doi:10.1016/j.apenergy.2018.02.177.
  • Bretado de Los Rios, M. S., C. I. Rivera-Solorio, and A. J. García-Cuéllar. 2018. Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids. Renewable Energy 122:665–73. doi:10.1016/j.renene.2018.01.094.
  • Chater, H., M. Asbik, A. Mouaky, A. Koukouch, V. Belandria, and B. Sarh. 2023. Experimental and CFD investigation of a helical coil heat exchanger coupled with a parabolic trough solar collector for heating a batch reactor: An exergy approach. Renewable Energy 202:1507–19. doi:10.1016/j.renene.2022.11.108.
  • Cheng, Z. D., Y. L. He, and F. Q. Cui. 2012. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. International Journal of Heat and Mass Transfer 55 (21–22):5631–41. doi:10.1016/j.ijheatmasstransfer.2012.05.057.
  • Chen, M., Y. He, J. Huang, and J. Zhu. 2016. Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles. Energy Conversion and Management 127:293–300. doi:10.1016/j.enconman.2016.09.015.
  • Chen, N., H. Ma, Y. Li, J. Cheng, C. Zhang, D. Wu, and H. Zhu. 2017. Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nano fl uids. Solar Energy Materials and Solar Cells 162:83–92. doi:10.1016/j.solmat.2016.12.049.
  • Crisostomo, F., N. Hjerrild, S. Mesgari, Q. Li, and R. A. Taylor. 2017. A hybrid PV/T collector using spectrally selective absorbing nanofluids Angle of Incidence Levelized Cost of Electricity. Applied Energy 193:1–14. doi:10.1016/j.apenergy.2017.02.028.
  • Ehyaei, M. A., A. Ahmadi, M. E. Assad, A. A. Hachicha, and Z. Said. 2019. Energy, exergy and economic analyses for the selection of working fluid and metal oxide nanofluids in a parabolic trough collector. Solar Energy 187:175–84. doi:10.1016/j.solener.2019.05.046.
  • Eltaweel, M., and A. A. Abdel-Rehim. 2019. Case Studies in Thermal Engineering Energy and exergy analysis of a thermosiphon and forced- circulation flat-plate solar collector using MWCNT/Water nano fl uid. Case Studies in Thermal Engineering 14:100416. doi:10.1016/j.csite.2019.100416.
  • Esmaeili, Z., S. Akbarzadeh, S. Rashidi, and M. S. Valipour. 2023. Effects of hybrid nanofluids and turbulator on efficiency improvement of parabolic trough solar collectors. Engineering Analysis with Boundary Elements 148:114–25. doi:10.1016/j.enganabound.2022.12.024.
  • Famiglietti, A., and A. Lecuona. 2021. Small-scale linear Fresnel collector using air as heat transfer fluid: Experimental characterization. Renewable Energy 176:459–74. doi:10.1016/j.renene.2021.05.048.
  • Farajzadeh, E., S. Movahed, and R. Hosseini. 2017. Experimental and numerical investigations on the effect of Al2O3/TiO2-H2O nanofluids on thermal efficiency of the flat plate solar collector. Renewable Energy 118:122–30. doi:10.1016/j.renene.2017.10.102.
  • Farooq, M., M. Farhan, G. Ahmad, Z. R. Tahir, M. Usman, M. Sultan, M. S. Hanif, M. Imran, S. Anwar, A. M. El-Sherbeeny, et al. 2022. Thermal performance enhancement of nanofluids based parabolic trough solar collector (NPTSC) for sustainable environment. Alexandria Engineering Journal 61 (11):8943–53. doi:10.1016/j.aej.2022.02.029.
  • Fuqiang, W., T. Jianyu, M. Lanxin, and W. Chengchao. 2015. Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system. Energy Conversion and Management 90:47–52. doi:10.1016/j.enconman.2014.11.004.
  • Fuqiang, W., L. Qingzhi, H. Huaizhi, and T. Jianyu. 2016. Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics. Applied Energy 164:411–24. doi:10.1016/j.apenergy.2015.11.084.
  • Fuqiang, W., C. Ziming, T. Jianyu, Y. Yuan, S. Yong, and L. Linhua. 2017. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews 79:1314–28. doi:10.1016/j.rser.2017.05.174.
  • Ghadirijafarbeigloo, S., A. H. Zamzamian, and M. Yaghoubi. 2014. 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Procedia 49:373–80. doi:10.1016/j.egypro.2014.03.040.
  • Gharzi, M., A. M. Kermani, and H. T. Shamsabadi. 2023. Experimental investigation of a parabolic trough collector-thermoelectric generator (PTC-TEG) hybrid solar system with a pressurized heat transfer fluid. Renewable Energy 202:270–79. doi:10.1016/j.renene.2022.11.110.
  • Ghasemi, S. E., and A. A. Ranjbar. 2016. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study. Journal of Molecular Liquids 222:159–66. doi:10.1016/j.molliq.2016.06.091.
  • Ghasemi, S. E., and A. A. Ranjbar. 2017a. Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. International Journal of Hydrogen Energy 42 (34):21626–34. doi:10.1016/j.ijhydene.2017.07.087.
  • Ghasemi, S. E., and A. A. Ranjbar. 2017b. Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Applied Thermal Engineering 118:807–16. doi:10.1016/j.applthermaleng.2017.03.021.
  • Hamada, M. A., H. Khalil, M. M. A. Al-Sood, and S. W. Sharshir. 2023. An experimental investigation of nanofluid, nanocoating, and energy storage materials on the performance of parabolic trough collector. Applied Thermal Engineering 219:119450. doi:10.1016/j.applthermaleng.2022.119450.
  • Heyhat, M. M., and M. Z. Khattar. 2023. On the effect of different placement schemes of metal foam as volumetric absorber on the thermal performance of a direct absorption parabolic trough solar collector. Energy 266:126428. doi:10.1016/j.energy.2022.126428.
  • Heyhat, M. M., M. Valizade, S. Abdolahzade, and M. Maerefat. 2019. Thermal efficiency enhancement of Direct Absorption Parabolic Trough Solar Collector (DAPTSC) by using nanofluid and metal foam. Energy 192:116662. doi:10.1016/j.energy.2019.116662.
  • Huang, Z., Z. Li, G. Yu, and W. Tao. 2016. Numerical investigations on fully-developed mixed turbulent convection in dimpled parabolic trough receiver tubes. Applied Thermal Engineering 114:1287–99. doi:10.1016/j.applthermaleng.2016.10.012.
  • Huang, Z., G. L. Yu, Z. Y. Li, and W. Q. Tao. 2015. Numerical study on heat transfer enhancement in a receiver tube of parabolic trough solar collector with dimples, protrusions and helical fins. Energy Procedia 69:1306–16. doi:10.1016/j.egypro.2015.03.149.
  • Huaxu, L., W. Fuqiang, L. Dong, Z. Jie, and T. Jianyu. 2018. Optical properties and transmittances of ZnO-containing nanofluids in spectral splitting photovoltaic/thermal systems. International Journal of Heat and Mass Transfer 128:668–78. doi:10.1016/j.ijheatmasstransfer.2018.09.032.
  • Huaxu, L., W. Fuqiang, Z. Dong, C. Ziming, Z. Chuanxin, L. Bo, and X. Huijin. 2020. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy 194:116913. doi:10.1016/j.energy.2020.116913.
  • Jamal-Abad, M. T., S. Saedodin, and M. Aminy. 2017. Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media. Renewable Energy 107:156–63. doi:10.1016/j.renene.2017.02.004.
  • Joseph, A., S. Sreekumar, and S. Thomas. 2020. Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector. Renewable Energy 162:1655–64. doi:10.1016/j.renene.2020.09.139.
  • Kaloudis, E., E. Papanicolaou, and V. Belessiotis. 2016. Numerical simulations of a parabolic trough solar collector with nano fl uid using a two-phase model. Renewable Energy 97:218–29. doi:10.1016/j.renene.2016.05.046.
  • Kasaeian, A., R. Daneshazarian, R. Rezaei, F. Pourfayaz, and G. Kasaeian. 2017. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. Journal of Cleaner Production 158:276–84. doi:10.1016/j.jclepro.2017.04.131.
  • Kasaeian, A., A. T. Eshghi, and M. Sameti. 2015. A review on the applications of nano fl uids in solar energy systems. Renewable and Sustainable Energy Reviews 43:584–98. doi:10.1016/j.rser.2014.11.020.
  • Kaya, H., M. Alkasem, and K. Arslan. 2020. Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency. Renewable Energy 162:267–84. doi:10.1016/j.renene.2020.08.039.
  • Khetib, Y., A. Alzaed, A. Alahmadi, G. Cheraghian, and M. Sharifpur. 2022. Application of hybrid nanofluid and a twisted turbulator in a parabolic solar trough collector: Energy and exergy models. Sustainable Energy Technologies and Assessments 49:101708. doi:10.1016/j.seta.2021.101708.
  • Kumaresan, G., P. Sudhakar, R. Santosh, and R. Velraj. 2017. Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renewable and Sustainable Energy Reviews 77:1–12. doi:10.1016/j.rser.2017.01.171.
  • Kurşun, B. 2019. Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes. Renewable Energy 140:816–27. doi:10.1016/j.renene.2019.03.106.
  • Liang, H., F. Wang, L. Yang, Z. Cheng, Y. Shuai, and H. Tan. 2021. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renewable and Sustainable Energy Reviews 141:110785. doi:10.1016/j.rser.2021.110785.
  • Liu, P., N. Zheng, Z. Liu, and W. Liu. 2019. Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts. Energy Conversion and Management 179:30–45. doi:10.1016/j.enconman.2018.10.057.
  • Li, J., X. Zhang, B. Xu, and M. Yuan. 2021. Nanofluid research and applications: A review. International Communications in Heat and Mass Transfer 127:105543. doi:10.1016/j.icheatmasstransfer.2021.105543.
  • Loni, R., E. A. Asli-Ardeh, B. Ghobadian, E. Bellos, and W. G. L. Roux. 2018. Numerical investigation of a solar dish concentrator with different cavity receivers and working fluids. Journal of Cleaner Production 198:1013–30. doi:10.1016/j.jclepro.2018.07.075.
  • Lu, J., Q. Yuan, J. Ding, W. Wang, and J. Liang. 2016. Experimental studies on nonuniform heat transfer and deformation performances for trough solar receiver. Applied Thermal Engineering 109:497–506. doi:10.1016/j.applthermaleng.2016.08.096.
  • Mahani, R. B., P. Talebizadehsardari, and A. K. Hussein. 2020. Thermal – hydraulic performance of hybrid nano-additives containing multiwall carbon nanotube-Al2O3 inside a parabolic through solar collector with turbulators. Ho Chi Minh City, Vietnam: Wiley.
  • Mashhadian, A., M. M. Heyhat, and O. Mahian. 2021. Improving environmental performance of a direct absorption parabolic trough collector by using hybrid nanofluids. Energy Conversion and Management 244:114450. doi:10.1016/j.enconman.2021.114450.
  • Menbari, A., A. Akbar, and Y. Ghayeb. 2016. Experimental investigation of stability and extinction coefficient of Al2O3 – CuO binary nanoparticles dispersed in ethylene glycol – water mixture for low-temperature direct absorption solar collectors. Energy Conversion and Management 108:501–10. doi:10.1016/j.enconman.2015.11.034.
  • Menbari, A., A. A. Alemrajabi, and A. Rezaei. 2017. Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids. Experimental Thermal and Fluid Science 80:218–27. doi:10.1016/j.expthermflusci.2016.08.023.
  • Minea, A. A., and W. M. El-Maghlany. 2018. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison. Renewable Energy 120:350–64. doi:10.1016/j.renene.2017.12.093.
  • Mohammed, H. A., H. B. Vuthaluru, and S. Liu. 2021. Heat transfer augmentation of parabolic trough solar collector receiver’s tube using hybrid nanofluids and conical turbulators. Journal of the Taiwan Institute of Chemical Engineers 125:215–42. doi:10.1016/j.jtice.2021.06.032.
  • Mwesigye, A., İ. H. Yılmaz, and J. P. Meyer. 2018. Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid. Renewable Energy 119:844–62. doi:10.1016/j.renene.2017.10.047.
  • Okonkwo, E. C., M. Abid, and T. A. H. Ratlamwala. 2018. Effects of synthetic oil nanofluids and absorber geometries on the exergetic performance of the parabolic trough collector. International Journal of Energy Research 42 (11):3559–74. doi:10.1002/er.4099.
  • Oran, O. A., F. Lezsovits, and A. Aljawabrah. 2020. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids. Journal of Thermal Analysis and Calorimetry 140:1579–1596.
  • Osorio, J. D., and A. Rivera-Alvarez. 2019. Performance analysis of parabolic trough collectors with double glass envelope. Renewable Energy 130:1092–107. doi:10.1016/j.renene.2018.06.024.
  • Otanicar, T., J. Dale, M. Orosz, N. Brekke, D. Dejarnette, E. Tunkara, K. Roberts, and P. Harikumar. 2018. Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures. Applied Energy 228:1531–39. doi:10.1016/j.apenergy.2018.07.055.
  • Ouni, M., L. M. Ladhar, M. Omri, W. Jamshed, and M. R. Eid. 2022. Solar water-pump thermal analysis utilizing copper–gold/engine oil hybrid nanofluid flowing in parabolic trough solar collector: Thermal case study. Case Studies in Thermal Engineering 30:101756. doi:10.1016/j.csite.2022.101756.
  • Padilla, R. V., G. Demirkaya, D. Y. Goswami, E. Stefanakos, and M. M. Rahman. 2011. Heat transfer analysis of parabolic trough solar receiver. Applied Energy 88 (12):5097–110. doi:10.1016/j.apenergy.2011.07.012.
  • Pavlovic, S., E. Bellos, and R. Loni. 2017. Exergetic investigation of a solar dish collector with smooth and corrugated spiral absorber operating with various nanofluids. Journal of Cleaner Production 174:1147–60. doi:10.1016/j.jclepro.2017.11.004.
  • Potenza, M., M. Milanese, G. Colangelo, and A. De Risi. 2017. Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Applied Energy 203:560–70. doi:10.1016/j.apenergy.2017.06.075.
  • Priyanka, S. Kumar, A. Kumar, and R. Maithani. 2022. Selection of optimal parameters using PSI approach of a dimpled-V pattern roughened solar heat collector. Materials Today: Proceedings 64:1229–33. doi:10.1016/j.matpr.2022.03.709.
  • Qin, C., J. B. Kim, and B. J. Lee. 2019. Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. Renewable Energy 143:24–33. doi:10.1016/j.renene.2019.04.146.
  • Reddy, K. S., K. Ravi Kumar, and C. S. Ajay. 2015. Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector. Renewable Energy 77:308–19. doi:10.1016/j.renene.2014.12.016.
  • Rehan, M. A., M. Ali, N. A. Sheikh, M. S. Khalil, G. Q. Chaudhary, T. Rashid, and M. Shehryar. 2017. Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions. Renewable Energy 118:742–751.
  • Rostami, S., S. Rostami, A. Shahsavar, A. S. Goldanlou, A. S. Goldanlou, G. Kefayati, and A. Shahsavar. 2020. Energy and exergy analysis of using turbulator in a parabolic trough solar collector filled with mesoporous silica modified with copper nanoparticles hybrid nanofluid. Energies 13 (11):2946. doi:10.3390/en13112946.
  • Sadegh Hosseini, S. M., and M. S. Dehaj. 2021. An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids. Energy 234:121317. doi:10.1016/j.energy.2021.121317.
  • Sadeghi, G., H. Safarzadeh, and M. Ameri. 2019. Experimental and numerical investigations on performance of evacuated tube solar collectors with parabolic concentrator, applying synthesized Cu2O/distilled water nanofluid. Energy for Sustainable Development 48:88–106. doi:10.1016/j.esd.2018.10.008.
  • Şahin, H. M., E. Baysal, A. R. Dal, and N. Şahin. 2015. Investigation of heat transfer enhancement in a new type heat exchanger using solar parabolic trough systems. International Journal of Hydrogen Energy 40 (44):15254–66. doi:10.1016/j.ijhydene.2015.03.009.
  • Samiezadeh, S., R. Khodaverdian, M. H. Doranehgard, H. Chehrmonavari, and Q. Xiong. 2022. CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector. Sustainable Energy Technologies and Assessments 50:101888. doi:10.1016/j.seta.2021.101888.
  • Sandeep, H. M., and U. C. Arunachala. 2017. Solar parabolic trough collectors: A review on heat transfer augmentation techniques. Renewable and Sustainable Energy Reviews 69:1218–31. doi:10.1016/j.rser.2016.11.242.
  • Saravanan, A., and S. Jaisankar. 2019. Collector equipped with V-cut and square cut twisted tape. International Journal of Thermal Sciences 140:59–70. doi:10.1016/j.ijthermalsci.2019.02.030.
  • Sarkar, J., P. Ghosh, and A. Adil. 2015. A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews 43:164–77. doi:10.1016/j.rser.2014.11.023.
  • Sen, S., and S. Ganguly. 2017. Opportunities, barriers and issues with renewable energy development – a discussion. Renewable and Sustainable Energy Reviews 69:1170–81. doi:10.1016/j.rser.2016.09.137.
  • Shaker, B., M. Gholinia, M. Pourfallah, and D. D. Ganji. 2022. CFD analysis of Al2O3-syltherm oil Nanofluid on parabolic trough solar collector with a new flange-shaped turbulator model. Theoretical and Applied Mechanics Letters 12 (2):100323. doi:10.1016/j.taml.2022.100323.
  • Sharma, A., S. Thakur, and P. Dhiman. 2023. An integrated active-passive solution for strengthening the functionality of a solar air heater. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (1):1–17. doi:10.1080/15567036.2022.2161675.
  • Sokhansefat, T., A. B. Kasaeian, F. Kowsary, and M. Carlo. 2014. Heat transfer enhancement in parabolic trough collector tube using Al 2 O 3/synthetic oil nano fluid. Renewable and Sustainable Energy Reviews 33:636–44. doi:10.1016/j.rser.2014.02.028.
  • Song, X., G. Dong, F. Gao, X. Diao, L. Zheng, and F. Zhou. 2014. A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts. Energy 77:771–82. doi:10.1016/j.energy.2014.09.049.
  • Sreekumar, S., A. Joseph, C. S. S. Kumar, and S. Thomas. 2019. Investigation on influence of antimony tin oxide/silver nanofluid on direct absorption parabolic solar collector. Journal of Cleaner Production 249:119378. doi:10.1016/j.jclepro.2019.119378.
  • Subramani, J., P. K. Nagarajan, O. Mahian, and R. Sathyamurthy. 2018. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime. Renewable Energy 119:19–31. doi:10.1016/j.renene.2017.11.079.
  • Su, D., Y. Jia, X. Huang, G. Alva, Y. Tang, and G. Fang. 2016. Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids. Energy Conversion and Management 120:13–24. doi:10.1016/j.enconman.2016.04.095.
  • Vandrasi, R. K., B. S. Kumar, and R. Devarapalli. 2022. Solar photo voltaic module parameter extraction using a novel Hybrid Chimp-Sine Cosine Algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.
  • Xiao, H., P. Liu, Z. Liu, and W. Liu. 2021. Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles. Renewable Energy 165:14–27. doi:10.1016/j.renene.2020.11.068.
  • Yang, H., Q. Wang, X. Huang, J. Li, and G. Pei. 2018. Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers. Energy 145:206–16. doi:10.1016/j.energy.2017.12.126.
  • Yılmaz, İ. H., A. Mwesigye, and T. T. Göksu. 2020. Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts. Sustainable Energy Technologies and Assessments 39:100696. doi:10.1016/j.seta.2020.100696.
  • Zeng, J., Y. Xuan, and H. Duan. 2016. Solar energy materials and solar cells tin-silica-silver composite nanoparticles for medium-to-high temperature volumetric absorption solar collectors. Solar Energy Materials and Solar Cells 157:930–36. doi:10.1016/j.solmat.2016.08.012.
  • Zhu, X., L. Zhu, and J. Zhao. 2017. Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver. Energy 141:1146–55. doi:10.1016/j.energy.2017.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.