237
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance enhancement of savonius wind turbine by multicurve blade shape

, , , &
Pages 1624-1642 | Received 07 Jul 2022, Accepted 21 Jan 2023, Published online: 21 Feb 2023

References

  • Abohela, I., N. Hamza, and S. Dudek. 2013. Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof-mounted wind turbines. Renewable Energy 50:1106–18. doi:10.1016/j.renene.2012.08.068.
  • Al Faruk, A., and A. Sharifian 2014. A influence of blade overlap and blade angle on the aerodynamic coefficients in vertical axis swirling type Savonius wind turbine. 19th Australasian Fluid Mechanics Conference (AFMC 2014), Melbourne, Australia.
  • Anh, D. L., B. D. Minh, H. V. Tam, and T. T. Hung. 2022a. Modified savonius wind turbine for wind energy harvesting in urban environments. ASME Journal of Fluids Engineering 144 (8):081501. doi:10.1115/1.4053619.
  • Anh, D. L., B. D. Minh, and C. D. Trinh. 2022b. High efficiency energy harvesting using a savonius turbine with multicurve and auxiliary blade. ASME Journal of Fluids Engineering 144 (11):111207. doi:10.1115/1.4054705.
  • Bach, G. 1931. Untersuchungen über Savonius-Rotoren und verwandte Strömungsmaschinen. Forsch Ing-Wes 2 (6):218–31. doi:10.1007/BF02579117.
  • Banerjee, A., S. Roy, P. Mukherjee, and U. K. Saha 2014. Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbine. Gas Turbine India Conference, 49644, V001T05A001. 10.1115/GTINDIA2014-8141
  • Bethi, R. V., L. Praveen, P. Kumar, and S. Mitra. 2018. Modified Savonius wind turbine for harvesting wind energy from trains moving in tunnels. Renewable Energy 135:1056–63. doi:10.1016/j.renene.2018.12.010.
  • Bianchini, A., F. Baldizzi, G. Ferrara, and L. Ferrari. 2017. Aerodynamics of darrieus wind turbines airfoils: the impact of pitching moment. Journal of Engineering for Gas Turbines and Power 139 (4):042602. doi:10.1115/1.4034940.
  • Blackwell, B. F., R. E. Sheldahl, and L. V. Feltz. 1978. Wind tunnel performance data for two- and three-bucket Savonius rotors. Journal of Energy 2 (3):3. doi:10.2514/3.47966.
  • Casani, M. 2016. Small vertical axis wind turbines for energy efficiency of buildings. Journal of Clean Energy Technologies 4 (1):56–65. doi:10.7763/JOCET.2016.V4.254.
  • Chan, C. M., H. L. Bai, and D. Q. He. 2018. Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Applied Energy 213:148–57. doi:10.1016/j.apenergy.2018.01.029.
  • Dittakavi, N. R. 2008. Computational acoustics of wall-bounded turbulent flows: Swirl combustor and venturi cavitation, . Purdue University ProQuest Dissertations Publishing, Purdue University.
  • Elmekawy, A. M. N., H. A. H. Saeed, and S. Z. Kassab. 2021. Performance enhancement of Savonius wind turbine by blade shape and twisted angle modifications. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235 (6):1487–500. doi:10.1177/0957650920987942.
  • Ferrari, G., D. Federici, P. Schito, F. Inzoli, and R. Mereu. 2017. CFD study of Savonius wind turbine: 3D model validation and parametric analysis. Renewable Energy 105:722–34. doi:10.1016/j.renene.2016.12.077.
  • Goh, S. C., and J. U. Schluter. 2016. Numerical simulation of a Savonius turbine above an infinite-width forward-facing step. Wind Engineering 40 (2):134–47. doi:10.1177/0309524X15624619.
  • Ji, B., X. W. Luo, X. Peng, and Y. Wu. 2013. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil. Journal of Hydrodynamics 25 (4):510–19. doi:10.1016/S1001-6058(11)60390-X.
  • Kacprzak, K., L. Grzegorz, and S. Krzysztof. 2013. Numerical investigation of conventional and modified Savonius wind turbines. Renewable Energy 60:578–85. doi:10.1016/j.renene.2013.06.009.
  • Kamoji, M. A., S. B. Kedare, and S. V. Prabhu. 2009. Experimental investigations on single stage modified Savonius rotor. Applied Energy 86 (7–8):1064–73. doi:10.1016/j.apenergy.2008.09.019.
  • Kaya, F. A., and A. Acir. 2022. Enhancing the aerodynamic performance of a Savonius wind turbine using Taguchi optimization method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):5610–26. doi:10.1080/15567036.2022.2088898.
  • Kerikous, E., and D. Thevenin. 2019. Optimal shape of thick blades for a hydraulic Savonius turbine. Renewable Energy 134:629–38. doi:10.1016/j.renene.2018.11.037.
  • Lee, J. H., Y. T. Lee, and H. C. Lim. 2016. Effect of twist angle on the performance of Savonius wind turbine. Renewable Energy 89:231–44. doi:10.1016/j.renene.2015.12.012.
  • Liang, X., S. Fu, B. Ou, C. Wu, C. Y. H. Chao, and K. Pi. 2017. A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renew Energy 113:329–34. doi:10.1016/j.renene.2017.04.071.
  • Marinic-Kragic, I., D. Vucina, and Z. Milaz. Computational analysis of Savonius wind turbine modifications including novel scooplet-based design attained via smart numerical optimization. Journal of Cleaner Production. 262. 20 July 2020. 21310. 10.1016/j.jclepro.2020.121310.
  • Mohamed, H. M., A. Faris, and D. Thévenin. 2021. Performance enhancement of a Savonius turbine under effect of frontal guiding plates. Energy Reports 7:6069–76. doi:10.1016/j.egyr.2021.09.021.
  • Nobile, R., M. Vahdati, J. F. Barlow, and A. Mewburn-Crook. 2014. Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study. Journal of Wind Engineering and Industrial Aerodynamics 125:168–79. doi:10.1016/j.jweia.2013.12.005.
  • Praveen, L., R. V. Bethi, P. Kumar, and S. Mitra. 2018. Improved design of Savonius rotor for green energy production from moving Singapore metropolitan rapid transit train inside tunnel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (7):2426–41. doi:10.1177/0954406218784620.
  • Quang, V. D., D. Quang-Van, N. D. Thanh, N. D. Duc, and N. D. Van. 2022. Offshore wind resource in the context of global climate change over a tropical area. Applied Energy 138:118369. doi:10.1016/j.apenergy.2021.118369.
  • Ramadan, A., M. Hemida, A. M. Abdel-Fadeel, W. A. Aissa, and M. H. Mohamed. 2021. Comprehensive experimental and numerical assessment of a drag turbine for river hydrokinetic energy conversion. Ocean Engineering 227:108587. doi:10.1016/j.oceaneng.2021.108587.
  • Roy, S., and U. K. Saha. 2015. Wind tunnel experiments of a newly developed two-bladed Savonius style wind turbine. Applied Energy 137:117–25. doi:10.1016/j.apenergy.2014.10.022.
  • Saeed, H. A. H., A. M. N. Elmekawy, and S. Z. Kassab. 2019. Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alexandria Engineering Journal 58 (2):429–41. doi:10.1016/j.aej.2019.03.005.
  • Salleh, M. B., N. M. Kamaruddin, Z. Mohamed-Kassim, and E. A. Bakar. 2021. Experimental investigation on the characterization of self-starting capability of a 3-bladed savonius hydrokinetic turbine using deflector plates. Ocean Engineering 228:108950. doi:10.1016/j.oceaneng.2021.108950.
  • Savonius, S. J. 1931. The S-rotor and its applications. Mechanical Engineering 53 (5):333–38.
  • Sharma, S., and R. K. Sharma. 2016. Performance improvement of Savonius rotor using multiple quarter blades – a CFD investigation. Energy Conversion and Management 127:43–54. doi:10.1016/j.enconman.2016.08.087.
  • Sissingh, J., and A. Eric. 2018. Wind Energy Potential Vietnam: Baseline Study Wind Energy Vietnam, 717144, Hengelo: Netherlands Enterprise Agency. https://docslib.org/doc/6509201/wind-energy-potential-vietnam .
  • Storti, B. A., J. J. Dorella, N. D. Roman, I. Peralta, and A. E. Albanesi. 2019. Improving the efficiency of a savonius wind turbine by designing a set of deflector plates with a metamodel – based optimization approach. Energy 186:115814. doi:10.1016/j.energy.2019.07.144.
  • Tartuferi, M., V. D’alessandro, S. Montelpare, and R. Ricci. 2015. Enhancement of Savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems. Energy 79:371–84. doi:10.1016/j.energy.2014.11.023.
  • Tian, W., Z. Mao, B. Zhang, and Y. Li. 2018. Shape optimization of a Savonius wind rotor with different convex and concave sides. Renewable Energy 117:287–99. doi:10.1016/j.renene.2017.10.067.
  • Trentin, P. F. S., P. H. B. B. Martines, G. B. Santos, E. E. Gasparin, and L. O. Salviano. 2022. Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine. Energy 240:122782. doi:10.1016/j.energy.2021.122782.
  • Zhang, B., B. Song, Z. Mao, W. Tian, B. Li, and B. Li. 2017. A novel parametric modeling method and optimal design for savonius wind turbines. Energies 10 (3):301. doi:10.3390/en10030301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.