152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of n-butanol additive on the combustion and emission characteristics of a coal-derived naphtha homogeneous charge compression ignition engine under different parameters

, , , , &
Pages 1654-1671 | Received 30 Aug 2022, Accepted 26 Nov 2022, Published online: 21 Feb 2023

References

  • Bhave, N. A., M. M. Gupta, and S. S. Joshi. 2020. Effect of Brown’s gas addition on combustion and emissions of homogeneous charge compression ignition engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2020.1817194.
  • Calam, A., B. Aydogan, and S. Halis. 2020. The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine. Fuel 266:117071. doi:10.1016/j.fuel.2020.117071.
  • Calam, A., S. Halis, B. Aydogan, and C. Hasimoglu. 2022. Combustion characteristics of naphtha and n-heptane fuels in an auto-ignited HCCI engine at different lambda values and engine loads. Fuel 327:125183. doi:10.1016/j.fuel.2022.125183.
  • Celebi, S., B. Duzcan, U. Demir, A. Uyumaz, and C. Hasimoglu. 2021. Effects of light naphtha utilization on engine performance in an homogeneous charged compression ignition engine. Fuel 306:121663. doi:10.1016/j.fuel.2021.121663.
  • Celebi, S., C. Hasimoglu, A. Uyumaz, S. Halis, A. Calam, H. Solmaz, and E. Yılmaz. 2021. Operating range, combustion, performance and emissions of an HCCI engine fueled with naphtha. Fuel 283:118828. doi:10.1016/j.fuel.2020.118828.
  • Coleman, H. W., and W. G. Steele Jr. 1989. Experimentation and uncertainty analysis for engineers. New York: John Wiley & Sons.
  • Duan, X. B., M. C. Lai, M. Jansons, G. M. Guo, and J. P. Liu. 2021. A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel 285:119142. doi:10.1016/j.fuel.2020.119142.
  • Gainey, B., Z. M. Yan, and B. Lawler. 2021. Autoignition characterization of methanol, ethanol, propanol, and butanol over a wide range of operating conditions in LTC/HCCI. Fuel 287:119495. doi:10.1016/j.fuel.2020.119495.
  • Ganesan, N., T. H. Le, P. Ekambaram, D. Balasubramanian, V. V. Le, and A. T. Hoang. 2022. Experimental assessment on performance and combustion behaviors of reactivity-controlled compression ignition engine operated by n-pentanol and cottonseed biodiesel. Journal of Cleaner Production 330:129781. doi:10.1016/j.jclepro.2021.129781.
  • He, B. Q., M. B. Liu, and H. Zhao. 2015. Comparison of combustion characteristics of n-butanol/ethanol-gasoline blends in a HCCI engine. Energy Conversion and Management 95:101–09. doi:10.1016/j.enconman.2015.02.019.
  • He, B. Q., J. Yuan, M. B. Liu, and H. Zhao. 2014. Combustion and emission characteristics of a n-butanol HCCI engine. Fuel 115:758–64. doi:10.1016/j.fuel.2013.07.089.
  • Hussain, S. K. A., M. Usman, J. Umer, M. Farooq, F. Noor, and R. Anjum. 2022. A novel analysis of n-butanol-gasoline blends impact on spark ignition engine characteristics and lubricant oil degradation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2022.2036874.
  • Jing, Z., C. H. Zhang, P. P. Cai, Y. Y. Li, P. Yin, and J. B. Wang. 2020. An experimental and numerical study of polyoxymethylene dimethyl ethers on a homogeneous charge compression ignition engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2020.1826604.
  • Juttu, S., S. S. Thipse, N. V. Marathe, and M. K. Gajendra Babu. 2007. Homogeneous charge compression ignition (HCCI): A new concept for near zero NOx and particulate matter (PM) from diesel engine combustion. SAE Technical Paper: 2007-26-020. doi:10.4271/2007-26-020.
  • Li, G., C. H. Zhang, and J. W. Zhou. 2017. Study on the knock tendency and cyclical variations of a HCCI engine fueled with n-butanol/n-heptane blends. Energy Conversion and Management 133:548–57. doi:10.1016/j.enconman.2016.10.074.
  • Lu, A., C. H. Zhang, Y. Z. Ren, Y. Y. Li, S. F. Li, and P. Yin. 2021. Research on knock recognition of coal-based naphtha homogeneous charge compression ignition engine based on combined feature extraction and classification. Fuel 300:120997. doi:10.1016/j.fuel.2021.120997.
  • Mack, J. H., D. Schuler, R. H. Butt, and R. W. Dibble. 2016. Experimental investigation of butanol isomer combustion in homogeneous charge compression ignition (HCCI) engines. Applied Energy 165:612–26. doi:10.1016/j.apenergy.2015.12.105.
  • Ogawa, H., K. Azuma, and N. Miyamoto. 2007. Combustion control and operating range expansion in an homogeneous charge compression ignition engine with suppression of low-temperature oxidation by methanol: Influence of compression ratio and octane number of main fuel. International Journal of Engine Research 8 (1):139–45. doi:10.1243/14680874JER01606.
  • Ogawa, H., N. Miyamoto, N. Kaneko, and H. Ando. 2003. Combustion control and operating range expansion in an HCCI engine with selective use of fuels with different low-temperature oxidation characteristics. SAE Technical Paper: 2003-01-1827. doi:10.4271/2003-01-1827.
  • Park, W. 2021. Naphtha as a fuel for internal combustion engines. International Journal of Automotive Technology 22 (4):1119–33. doi:10.1007/s12239-021-0100-9.
  • Parthasarathy, M., S. Ramkumar, P. V. Elumalai, N. M. Nachippan, and B. Dhinesh. 2020. Control strategies on HCCI engine performance and emission characteristics by combined effect of exhaust gas recirculation with blend of biodiesel and n-heptane. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1850924.
  • Polat, S., H. Solmaz, E. Yilmaz, A. Calam, A. Uyumaz, and H. S. Yucesu. 2019. Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (9):1140–54. doi:10.1080/15567036.2019.1602224.
  • Uyumaz, A. 2015. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures. Energy Conversion and Management 98:199–207. doi:10.1016/j.enconman.2015.03.043.
  • Veza, I., A. Afzal, M. A. Mujtaba, A. T. Hoang, D. Balasubramanian, M. Sekar, I. M. R. Fattah, M. E. M. Soudagar, A. I. EL-Seesy, and D. W. Djamari. 2022. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alexandria Engineering Journal 61 (11):8363–91. doi:10.1016/j.aej.2022.01.072.
  • Zheng, M., X. Y. Han, U. Asad, and J. X. Wang. 2015. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine. Energy Conversion and Management 98:215–24. doi:10.1016/j.enconman.2015.03.098.
  • Zhou, A., C. H. Zhang, Y. Y. Li, S. F. Li, and P. Yin. 2019. Effect of hydrogen peroxide additive on the combustion and emission characteristics of an n-butanol homogeneous charge compression ignition engine. Energy 169:572–79. doi:10.1016/j.energy.2018.12.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.