102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal performance investigation of LiBr solution–based nanofluids in plate heat exchangers

, , , , &
Pages 1731-1746 | Received 16 Jun 2022, Accepted 16 Dec 2022, Published online: 22 Feb 2023

References

  • Cao, T., H. Lee, Y. Hwang, R. Radermacher, and H. H. Chun. 2015. Performance investigation of engine waste heat powered absorption cycle cooling system for shipboard applications. Applied Thermal Engineering 90:820–30. doi:10.1016/j.applthermaleng.2015.07.070.
  • Chen, T., K. J. Bae, and O. K. Kwon. 2018. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery. Heat and Mass Transfer 54 (2):305–12. doi:10.1007/s00231-017-2125-1.
  • Fazeli, I., M. R. Sarmasti Emami, and A. Rashidi. 2021. Investigation and optimization of the behavior of heat transfer and flow of MWCNT-CuO hybrid nanofluid in a brazed plate heat exchanger using response surface methodology. International Communications in Heat and Mass Transfer 122:105175. doi:10.1016/j.icheatmasstransfer.2021.105175.
  • Focke, W. W., J. Zachariades, and I. Olivier. 1985. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers. International Journal of Heat and Mass Transfer 28 (8):1469–79. doi:10.1016/0017-9310(85)90249-2.
  • Ham, J., J. Kim, and H. Cho. 2016. Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution. Applied Thermal Engineering 108:1020–32. doi:10.1016/j.applthermaleng.2016.07.196.
  • Hen, T. C., J. Kim, and H. Cho. 2014. Theoretical analysis of the thermal performance of a plate heat exchanger at various chevron angles using lithium bromide solution with nanofluid. International Journal of Refrigeration 48:233–44. doi:10.1016/j.ijrefrig.2014.08.013.
  • Hong, S. J., S. M. Lee, C. H. Lee, I. G. Kim, and C. W. Park. 2019. Thermally-driven hybrid vapor absorption cycle: Simultaneous and flexible use of steam generation heat pump and refrigeration applications. Energy 201:112100. doi:10.1016/j.enconman.2019.112100.
  • Huang, D., Z. Wu, and B. Sunden. 2015. Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. International Journal of Heat and Mass Transfer 89:620–26. doi:10.1016/j.ijheatmasstransfer.2015.05.082.
  • Khan, T. S., M. S. Khan, M. Chyu, and Z. H. Ayub. 2010. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Applied Thermal Engineering 30 (8):1058–65. doi:10.1016/j.applthermaleng.2010.01.021.
  • Kurose, K., N. Watanabe, K. Miyata, H. Mori, Y. Hamamoto, and S. Umezawa. 2021. Numerical simulation of flow and cooling heat transfer of supercritical pressure refrigerants in chevron-type plate heat exchanger. International Journal of Heat and Mass Transfer 180:121758. doi:10.1016/j.ijheatmasstransfer.2021.121758.
  • Kwon, O. K., D. A. Cha, J. H. Yun, and H. -S. Kim. 2009. Performance Evaluation of Plate Heat Exchanger with Chevron Angle Variations. Transactions of the Korean Society of Mechanical Engineers B 33 (7):520–26. doi:10.3795/KSME-B.2009.33.7.520.
  • Lee, M., J. Kim, H. H. Shin, W. Cho, and Y. Kim. 2022. CO2 emissions and energy performance analysis of ground-source and solar-assisted ground-source heat pumps using low-GWP refrigerants. Energy 261:125198. doi:10.1016/j.energy.2022.125198.
  • Lee, J., and K. -S. Lee. 2015. Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers, Appl. Applied Thermal Engineering 89:62–69. doi:10.1016/j.applthermaleng.2015.05.080.
  • Martin, H. 1996. A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chemical Engineering and Processing: Process Intensification 35 (4):301–10. doi:10.1016/0255-2701(95)04129-X.
  • Panday, N. K., and S. N. Singh. 2020. Thermo-hydraulic performance analysis of multi-pass chevron type plate heat exchanger. Thermal Science and Engineering Progress 16:100478. doi:10.1016/j.tsep.2020.100478.
  • Park, J. H., J. W. Lee, S. Kim, R. Xu, and Y. T. Kang. 2021. Absorption/Regeneration performance evaluation of methanol based magnetic nanoabsorbent for industrial CO2 capture applications. Journal of CO2 Utilization 54:101753. doi:10.1016/j.jcou.2021.101753.
  • Sadeghianjahromi, A., A. Jafari, and C. C. Wamg. 2022. Numerical investigation of the effect of chevron angle on thermofluids characteristics of non-mixed and mixed brazed plate heat exchangers with experimental validation. International Journal of Heat and Mass Transfer 1840:122278. doi:10.1016/j.ijheatmasstransfer.2021.122278.
  • Saleh, B., and L. S. Sundar. 2021. Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. International Journal of Thermal Sciences 165:106935. doi:10.1016/j.ijthermalsci.2021.106935.
  • Song, J. Y., J. W. Lee, and Y. T. Kang. 2019. Comparisons of Nu correlations for H2O/LiBr solution in plate heat exchanger for triple effect absorption chiller application. Energy (Oxford) 172:852–60. doi:10.1016/j.energy.2019.02.013.
  • Song, J. Y., J. H. Park, and Y. T. Kang. 2021. Heat transfer and frictional pressure drop characteristics of H2O/LiBr solution in plate heat exchangers for triple-effect absorption application. Applied Thermal Engineering 189:116730. doi:10.1016/j.applthermaleng.2021.116730.
  • Teja, A. S. 1987. Thermophysical property data for lithium bromide. Atlanta: Georgia Institute of Technology.
  • Teng, T. P., T. C. Hsiao, and C. C. Chung. 2019. Characteristics of carbon-based nanofluids and their application in a brazed plate heat exchanger under laminar flow. International Journal of Heat and Mass Transfer 146:160–68. doi:10.1016/j.applthermaleng.2018.09.125.
  • Yang, M., S. Y. Lee, J. T. Chung, and Y. T. Kang. 2017. High efficiency H2O/LiBr double effect absorption cycles with multi-heat sources for tri-generation application. Applied Energy 187:243–54. doi:10.1016/j.apenergy.2016.11.067.
  • Zhu, X., and F. Haglind. 2020. Relationship between inclination angle and friction factor of chevron-type plate heat exchangers. International Journal of Heat and Mass Transfer 162:120370. doi:10.1016/j.ijheatmasstransfer.2020.120370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.