150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation and experimental study on improving gas drainage by hydraulic fracturing

, , , &
Pages 1965-1982 | Received 06 Oct 2022, Accepted 07 Feb 2023, Published online: 02 Mar 2023

References

  • Cao, W., B. Yildirim, S. Durucan, K. H. Wolf, W. Cai, H. Agrawal, and A. Korre. 2021. Fracture behaviour and seismic response of naturally fractured coal subjected to true triaxial stresses and hydraulic fracturing. Fuel 288:119618. doi:10.1016/j.fuel.2020.119618.
  • Cheng, Y., Y. Lu, Z. Ge, L. Cheng, J. Zheng, and W. Zhang. 2018. Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing. Fuel 218:316–24. doi:10.1016/j.fuel.2018.01.034.
  • Chen, M., L. J. Hosking, R. J. Sandford, and H. R. Thomas. 2019. Dual porosity modelling of the coupled mechanical response of coal to gas flow and adsorption. International Journal of Coal Geology 205:115–25. doi:10.1016/j.coal.2019.01.009.
  • Cleary, M. P. (1980, September). Analysis of mechanisms and procedures for producing favourable shapes of hydraulic fractures. In SPE Annual Technical Conference and Exhibition. OnePetro. doi: 10.2118/9260-MS
  • Fan, Y., L. Shu, Z. Huo, J. Hao, L. Yang, and G. Feng. 2021. Numerical simulation research on hydraulic fracturing promoting coalbed methane extraction. Shock and Vibration 2021:1–12. 2021. doi:10.1155/2021/3269592.
  • Haimson, B., and C. Fairhurst. 1967. Initiation and extension of hydraulic fractures in rocks. Society of Petroleum Engineers Journal 7 (03):310–18. doi:10.2118/1710-PA.
  • Jiang, C., X. Gao, B. Hou, S. Zhang, J. Zhang, C. Li, and W. Wang. 2020. Occurrence and environmental impact of coal mine goaf water in karst areas in China. Journal of Cleaner Production 275:123813. doi:10.1016/j.jclepro.2020.123813.
  • Kong, B., Z. Cao, T. Sun, C. Qi, and Y. Zhang. 2022. Safety hazards in coal mines of Guizhou China during 2011–2020. Safety Science 145:105493. doi:10.1016/j.ssci.2021.105493.
  • Lamas, L. F., E. M. Ruidiaz, and A. C. Vidal. 2021. Study of empirical correlation between permeability and porosity with application for permeability upscaling. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (12):1–12. doi:10.1007/s40430-021-03227-7.
  • Li, J., Z. Chen, K. Wu, R. Li, J. Xu, Q. Liu, and X. Li. 2018. Effect of water saturation on gas slippage in tight rocks. Fuel 225:519–32. doi:10.1016/j.fuel.2018.03.186.
  • Liu, Q., Y. Cheng, H. Zhou, P. Guo, F. An, and H. Chen. 2015. A mathematical model of coupled gas flow and coal deformation with gas diffusion and Klinkenberg effects. Rock Mechanics & Rock Engineering 48 (3):1163–80. doi:10.1007/s00603-014-0594-9.
  • Liu, S., C. Wei, W. Zhu, and M. Zhang. 2020. Temperature-and pressure-dependent gas diffusion in coal particles: Numerical model and experiments. Fuel 266:117054. doi:10.1016/j.fuel.2020.117054.
  • Liu, J., Z. Wu, P. Lu, Z. Liu, and M. Su. 2023. Study on effective extraction radius of directional long borehole and analysis of the influence mechanism. ACS Omega 8 (2):2344–56. doi:10.1021/acsomega.2c06749.
  • Mou, P., J. Pan, K. Wang, J. Wei, Y. Yang, and X. Wang. 2021. Influences of hydraulic fracturing on microfractures of high-rank coal under different in-situ stress conditions. Fuel 287:119566. doi:10.1016/j.fuel.2020.119566.
  • Mukherjee, M., A. Bal, and S. Misra. 2021. Role of pore-size distribution in coals to govern the klinkenberg coefficient and intrinsic permeability. Energy & Fuels 35 (11):9561–69. doi:10.1021/acs.energyfuels.1c00480.
  • Selyutina, N. S., and Y. V. Petrov. 2020. Fracture of saturated concrete and rocks under dynamic loading. Engineering Fracture Mechanics 225:106265. doi:10.1016/j.engfracmech.2018.11.052.
  • Suo, J., Q. Qin, W. Wang, Z. Li, C. Huang, Y. Xu, Z. Chen, and J. Liu. 2022. Disastrous mechanism of water burst by karst roof channel in rocky desertification mining area in southwest China. Geofluids 2022:1–9. 2022. doi:10.1155/2022/7332182.
  • Wang, T., W. Hu, D. Elsworth, W. Zhou, W. Zhou, X. Zhao, and L. Zhao. 2017. The effect of natural fractures on hydraulic fracturing propagation in coal seams. Journal of Petroleum Science and Engineering 150:180–90. doi:10.1016/j.petrol.2016.12.009.
  • Wang, Q., Y. Hu, J. Zhao, S. Chen, C. Fu, and C. Zhao. 2020. Numerical simulation of fracture initiation, propagation and fracture complexity in the presence of multiple perforations. Journal of Natural Gas Science and Engineering 83:103486. doi:10.1016/j.jngse.2020.103486.
  • Wei, C., B. Zhang, S. Li, Z. Fan, and C. Li. 2021. Interaction between hydraulic fracture and pre-existing fracture under pulse hydraulic fracturing. SPE Production & Operations 36 (03):553–71. doi:10.2118/205387-PA.
  • Wu, X. Y., L. S. Jiang, X. G. Xu, T. Guo, P. P. Zhang, and W. P. Huang. 2021. Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress. Journal of Central South University 28 (2):543–55. doi:10.1007/s11771-021-4620-2.
  • Wu, X., T. Zhu, Y. Liu, G. Zhang, G. Zheng, and F. Wang. 2022. Mechanism of coal seam permeability enhancement and gas outburst prevention under hydraulic fracturing technology. Geofluids 2022:1–9. doi:10.1155/2022/7151851.
  • Yin, Z., Z. Chen, J. Chang, Z. Hu, H. Ma, and R. Feng. 2019. Crack initiation characteristics of gas-containing coal under gas pressures. Geofluids 2019:1–12. 2019. doi:10.1155/2019/5387907.
  • Yuan, A., C. Huang, J. Hou, Z. Zhang, W. Pan, L. Duan, and Q. Wu. 2020. A study of the solid-liquid-gas three-phase coupling relationship of coal, water, and gas. Geofluids 2020:1–9. doi:10.1155/2020/8882114.
  • Yuan, B., and Q. Ren (2021, September). Experimental Study on Permeability Enhancement of Hydraulic Fracturing with Sand in Strong Outburst Coal Seam. In IOP Conference Series: Earth and Environmental Science (Vol. 859, No. 1, p. 012026). IOP Publishing. doi: 10.1088/1755-1315/859/1/012026
  • Yu, K., K. Zhao, and Y. Ju. 2022. A comparative study of the permeability enhancement in coal and clay-rich shale by hydraulic fracturing using nano-CT and SEM image analysis. Applied Clay Science 218:106430. doi:10.1016/j.clay.2022.106430.
  • Zheng, J., W. Ju, X. Sun, P. Jiang, Y. Zheng, Z. Ma, and L. Zhu, B. Yi. 2021. Analysis of hydro-fracturing technique using ultra-deep boreholes for coal mining with hard roofs: A case study. Mining, Metallurgy & Exploration 38 (1):471–84. doi:10.1007/s42461-020-00334-2.
  • Zhong, J., Z. Ge, Y. Lu, Z. Zhou, and J. Zheng. 2021. Prediction of fracture initiation pressure in multiple failure hydraulic fracturing modes: Three-dimensional stress model considering borehole deformation. Journal of Petroleum Science and Engineering 199:108264. doi:10.1016/j.petrol.2020.108264.
  • Zhou, L., X. Su, Y. Lu, Z. Ge, Z. Zhang, and Z. Shen. 2019. A new three-dimensional numerical model based on the equivalent continuum method to simulate hydraulic fracture propagation in an underground coal mine. Rock Mechanics & Rock Engineering 52 (8):2871–87. doi:10.1007/s00603-018-1684-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.