166
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of H2O on NO at oxy-fuel combustion condition of ethanol/NH3 and ethylene glycol/ NH3

, , , , &
Pages 2193-2205 | Received 09 Nov 2022, Accepted 20 Jan 2023, Published online: 03 Mar 2023

References

  • Álvarez, L., J. Riaza, M. V. Gil, C. Pevida, J. J. Pis, and F. Rubiera. 2011. NO emissions in oxy-coal combustion with the addition of steam in an entrained flow reactor. Greenh Gases 1 (2):180–90. doi:10.1002/ghg.
  • Barbas, M., M. Costa, S. Vranckx, and R. X. Fernandes. 2015. Experimental and chemical kinetic study of CO and NO formation in oxy-methane premixed laminar flames doped with NH3. Combustion and Flame 162 (4):1294–303. doi:10.1016/j.combustflame.2014.10.020.
  • Bohon, M. D., M. J. Al Rashidi, S. M. Sarathy, and W. L. Roberts. 2015. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels. Combustion and Flame 162 (6):2322–36. doi:10.1016/j.combustflame.2015.01.022.
  • Chaiklangmuang, S., J. M. Jones, M. Pourkashanian, and A. Williams. 2002. Conversion of volatile-nitrogen and char-nitrogen to NO during combustionq. Fuel 81 (18):2363–69. doi:10.1016/S0016-2361(02)00175-8.
  • Chen, J., W. Fan, X. Wu, S. Liu, and X. Wang. 2021. Experimental study of NH3 transformation in the CO/O2/CO2 system at 1073–1773 K. Fuel Processing Technology 217:106829. doi:https://doi.org/10.1016/j.fuproc.2021.106829.
  • Chen, Z., and Y. Jiang. 2021. Kinetic modeling investigation on the NH3/C2H5OH/air laminar premixed burning characteristics at different equivalence ratios. Energy Sources, Part A: Recovery, Utilization, and Environmental Effcets 1–14. doi:10.1080/15567036.2021.1998253.
  • El Bakali, A., L. Pillier, P. Desgroux, B. Lefort, L. Gasnot, J. F. Pauwels, and I. da Costa. 2006. NO prediction in natural gas flames using GDF-Kin®3.0 mechanism NCN and HCN contribution to prompt-NO formation. Fuel 85 (7–8):896–909. doi:10.1016/j.fuel.2005.10.012.
  • He, Y., X. Zheng, J. Luo, H. Zheng, C. Zou, G. Luo, and C. Zheng. 2017. Experimental and numerical study of the effects of steam addition on NO formation during methane and ammonia Oxy-Fuel combustion. Energy & Fuels 31 (9):10093–100. doi:10.1021/acs.energyfuels.7b01550.
  • He, Y., C. Zou, Y. Song, W. Chen, H. Jia, and C. Zheng. 2016. Experimental and numerical study of the effect of high steam concentration on the Oxidation of methane and ammonia during Oxy-Steam combustion. Energy & Fuels 30 (8):6799–807. doi:10.1021/acs.energyfuels.6b00993.
  • Jin, S. C., Y. J. Tu, and H. Liu. 2022. Experimental study and kinetic modeling of NH3/CH4 co-oxidation in a jet-stirred reactor. International Journal of Hydrogen Energy 47 (85):36323–41. doi:10.1016/j.ijhydene.2022.08.178.
  • Kim, S., J. Park, and S. Keel. 2002. Thermal and chemical contributions of added H2O and CO2 to major flame structures and NO emission characteristics in H2/N2 laminar diffusion flame. International Journal of Energy Research 26 (12):1073–86. doi:10.1002/er.837.
  • Le Cong, T., and P. Dagaut. 2009. Experimental and detailed modeling study of the effect of water vapor on the kinetics of combustion of Hydrogen and Natural Gas, impact on NOx. Energy & Fuels 23 (2):725–34. doi:10.1021/ef800832q.
  • Liu, S., W. Fan, H. Guo, X. Wu, J. Chen, Z. Liu, and X. Wang. 2020. Relationship between the N2O decomposition and NO formation in H2O/CO2/NH3/NO atmosphere under the conditions of simulated air-staged combustion in the temperature interval of 900–1600 °C. Energy 211:118647. doi:10.1016/j.energy.2020.118647.
  • Mendiara, T., and P. Glarborg. 2009. Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame 156 (10):1937–49. doi:https://doi.org/10.1016/j.combustflame.2009.07.006.
  • Miller, J. A., and C. T. Bowman. 1989. Mechanism and modeling of nitrogen chemistry in combustion. Energy Combust 15 (4):287–338. doi:10.1016/0360-1285(89)90017-8.
  • Moskaleva, L. V., and M. C. Lin. 2000. The spin-conserved reaction CH+N2→H+NCN: A major pathway to prompt no studied by quantum/statistical theory calculations and kinetic modeling of rate constant. Proceedings of the Combustion Institute 28 (2):2393–401. doi:10.1016/S0082-0784(00)80652-9.
  • Ndibe, C., R. Spörl, J. Maier, and G. Scheffknecht. 2013. Experimental study of NO and NO2 formation in a PF oxy-fuel firing system. Fuel 107:749–56. doi:10.1016/j.fuel.2013.01.055.
  • Normann, F., K. Andersson, F. Johnsson, and B. Leckner. 2010. Reburning in Oxy-Fuel combustion: A parametric study of the combustion chemistry. Industrial & Engineering Chemistry Research 49 (19):9088–94. doi:10.1021/ie101192a.
  • Normann, F., K. Andersson, B. Leckner, and F. Johnsson. 2009. Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science 35 (5):385–97. doi:10.1016/j.pecs.2009.04.002.
  • Ren, Q., H. Chi, J. Gao, C. Zhang, S. Su, H. Leong, K. Xu, S. Hu, Y. Wang, and J. Xiang. 2020. Experimental study and mechanism analysis of NO formation during volatile-N model compounds combustion in H2O/CO2 atmosphere. Fuel 273:117722. doi:10.1016/j.fuel.2020.117722.
  • Sarathy, S. M., P. Oßwald, N. Hansen, and K. Kohse-Höinghaus. 2014. Alcohol combustion chemistry. Progress in Energy and Combustion Science 44:40–102. doi:https://doi.org/10.1016/j.pecs.2014.04.003.
  • Sarathy, S. M., S. Vranckx, K. Yasunaga, M. Mehl, P. Oßwald, W. K. Metcalfe, C. K. Westbrook, W. J. Pitz, K. Kohse-Höinghaus, R. X. Fernandes, et al. 2012. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combustion and Flame 159 (6):2028–55. doi:10.1016/j.combustflame.2011.12.017.
  • Shmakov, A. G., O. P. Korobeinichev, I. V. Rybitskaya, A. A. Chernov, D. A. Knyazkov, T. A. Bolshova, and A. A. Konnov. 2010. Formation and consumption of NO in H2+O2+N2 flames doped with NO or NH3 at atmospheric pressure. Combustion and Flame 157 (3):556–65. doi:10.1016/j.combustflame.2009.10.008.
  • Stadler, H., D. Christ, M. Habermehl, P. Heil, A. Kellermann, A. Ohliger, D. Toporov, and R. Kneer. 2011. Experimental investigation of NO emissions in oxycoal combustion. Fuel 90 (4):1604–11. doi:10.1016/j.fuel.2010.11.026.
  • Sun, Z., J. Xu, S. Su, M. Qing, L. Wang, X. Cui, M. E. Mostafa, C. Zhang, S. Hu, Y. Wang, et al. 2019. Formation and reduction of NO from the oxidation of NH3/CH4 with high concentration of H2O. Fuel 247:19–25. doi:https://doi.org/10.1016/j.fuel.2019.02.121.
  • Toftegaard, M. B., J. Brix, P. A. Jensen, P. Glarborg, and A. D. Jensen. 2010. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science 36 (5):581–625. doi:10.1016/j.pecs.2010.02.001.
  • Wang, Z., Y. Zhou, R. Whiddon, Y. He, K. Cen, and Z. Li. 2016. Investigation of NO formation in premixed adiabatic laminar flames of H2/CO syngas and air by saturated laser-induced fluorescence and kinetic modeling. Combustion and Flame 164:283–93. doi:https://doi.org/10.1016/j.combustflame.2015.11.027.
  • Watanabe, H., F. Arai, and K. Okazaki. 2013. Role of CO2 in the CH4 oxidation and H2 formation during fuel-rich combustion in O2/CO2 environments. Combustion and Flame 160 (11):2375–85. doi:10.1016/j.combustflame.2013.05.022.
  • Watanabe, H., T. Marumo, and K. Okazaki. 2012. Effect of CO2 reactivity on NOx formation and reduction mechanisms in O2/CO2 combustion. Energy & Fuels 26 (2):938–51. doi:10.1021/ef201702g.
  • Xu, J., S. Su, Z. Sun, N. Si, M. Qing, L. Liu, S. Hu, Y. Wang, and J. Xiang. 2016. Effects of H2O gasification reaction on the characteristics of chars under oxy-fuel combustion conditions with wet recycle. Energy & Fuels 30 (11):9071–79. doi:10.1021/acs.energyfuels.6b01725.
  • Yadav, S., and S. S. Mondal. 2022. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 308:308. doi:https://doi.org/10.1016/j.fuel.2021.122057.
  • Yasunaga, K., T. Mikajiri, S. M. Sarathy, T. Koike, F. Gillespie, T. Nagy, J. M. Simmie, and H. J. Curran. 2012. A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. Combustion and Flame 159 (6):2009–27. doi:10.1016/j.combustflame.2012.02.008.
  • Zhou, H., Y. Li, N. Li, R. Qiu, and K. Cen. 2019. Conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle under oxy-fuel fluidized bed conditions. Journal of the Energy Institute 92 (2):351–63. doi:10.1016/j.joei.2018.01.001.
  • Zou, C., Y. He, Y. Song, Q. Han, Y. Liu, F. Guo, and C. Zheng. 2015. The characteristics and mechanism of the NO formation during oxy-steam combustion. Fuel 158:874–83. doi:10.1016/j.fuel.2015.06.034.
  • Zou, C., Y. Song, G. Li, S. Cao, Y. He, and C. Zheng. 2014. The chemical mechanism of steam’s effect on the temperature in methane oxy-steam combustion. International Journal of Heat and Mass Transfer 75:12–18. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.