138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Proportional optimization forecasting analysis of photovoltaic and coal-fired power in 2050, China: the economic and environmental perspectives

, , & ORCID Icon
Pages 2044-2057 | Received 08 Aug 2022, Accepted 18 Feb 2023, Published online: 05 Mar 2023

References

  • Cucchiella, F., I. D’adamo, and M. Gastaldi. 2016. A profitability assessment of small-scale photovoltaic systems in an electricity market without subsidies. Energy Convers Manag 129:62–74. doi:10.1016/j.enconman.2016.09.075.
  • Ding, N., J. Pan, J. Liu, and J. Yang. 2019. An optimization method for energy structures based on life cycle assessment and its application to the power grid in China. Journal of Environmental Management 238:18–24. doi:10.1016/j.jenvman.2019.02.072.
  • Enongene, K. E., F. H. Abanda, I. J. J. Otene, S. I. Obi, and C. Okafor. 2019. The potential of solar photovoltaic systems for residential homes in Lagos city of Nigeria. Journal of Environmental Management 244:247–56. doi:10.1016/j.jenvman.2019.04.039.
  • Fan, J. L., S. J. Wei, M. Xu, P. Zhong, X. Zhang, Y. Yang, and H. Wang. 2018. The LCOE of Chinese coal-fired power plants with CCS technology: A comparison with natural gas power plants. Energy Procedia 154:29–35. doi:10.1016/j.egypro.2018.11.006.
  • Hadi, E., and A. Heidari. 2021. Development of an integrated tool based on life cycle assessment, Levelized energy, and life cycle cost analysis to choose sustainable facade integrated photovoltaic systems. Journal of Cleaner Production 293:126117. doi:10.1016/j.jclepro.2021.126117.
  • Hansen, L. G., A. P. DeCaprio, and I. C. T. Nisbet. 2003. PCB congener comparisons reveal exposure histories for residents of Anniston, Alabama, USA. Fresenius Environmental Bulletin 12:181–90.
  • Hodgkinson, J. H., and M. H. Smith. 2018. Climate change and sustainability as drivers for the next mining and metals boom: The need for climate-smart mining and recycling. Resources Policy 74:101205. doi:10.1016/j.resourpol.2018.05.016.
  • Huang, H., J. Hui, W. Cai, and C. Wang. 2019. Optimizing the power generation structure for low carbon development target in China: A comparison study of endogenous and exogenous technology improvements. Energy Procedia 158:4055–60. doi:10.1016/j.egypro.2019.01.832.
  • Huang, T., S. Wang, Q. Yang, and J. Li. 2018. A GIS-based assessment of large-scale PV potential in China. Energy Procedia 152:1079–84. doi:10.1016/j.egypro.2018.09.126.
  • Li, H., H. Lin, Q. Tan, P. Wu, C. Wang, G. De, and L. Huang. 2020a. Research on the policy route of China’s distributed photovoltaic power generation. Energy Reports 6:254–63. doi:10.1016/j.egyr.2019.12.027.
  • Li, H., H. -D. Jiang, K. -Y. Dong, Y. -M. Wei, and H. Liao. 2020b. A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China. Journal of Cleaner Production 248:119192. doi:10.1016/j.jclepro.2019.119192.
  • Lin, B., and J. Zhu. 2020. Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter? Applied Energy 262:114505. doi:10.1016/j.apenergy.2020.114505.
  • Mukoro, V., A. Gallego-Schmid, and M. Sharmina. 2021. Life cycle assessment of renewable energy in Africa. Sustain. productsConsumer 28:1314–32. doi:10.1016/j.spc.2021.08.006.
  • Naves, A. X., C. Barreneche, A. I. Fernández, L. F. Cabeza, A. N. Haddad, and D. Boer. 2019. Life cycle costing as a bottom line for the life cycle sustainability assessment in the solar energy sector: A review. Sol Energy 192:238–62. doi:10.1016/j.solener.2018.04.011.
  • Pu, Y., Y. Wang, and P. Wang. 2022. Driving effects of urbanization on city-level carbon dioxide emissions: From multiple perspectives of urbanization. International Journal of Urban Sciences 26:108–28. doi:10.1080/12265934.2020.1803105.
  • Ren, F. R., Z. Tian, J. Liu, and Y. T. Shen. 2020. Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on input-output perspective. Energy 199:117493. doi:10.1016/j.energy.2020.117493.
  • Sens, L., U. Neuling, and M. Kaltschmitt. 2022. Capital expenditure and levelized cost of electricity of photovoltaic plants and wind turbines – development by 2050. Renewable Energy 185:525–37. doi:10.1016/j.renene.2021.12.042.
  • Wang, P., P. Yu, L. Huang, and Y. Zhang. 2022a. An integrated technical, economic, and environmental framework for evaluating the rooftop photovoltaic potential of old residential buildings. Journal of Environmental Management 317:115296. doi:10.1016/j.jenvman.2022.115296.
  • Wang P, Zhu Y, Liu J, Yu P and Huang L. 2022b. Is the secondary consumption of renewable energy sustainable? Empirical evidence from the photovoltaic industry in China. Energy Reports, 8:6443–6456. doi:10.1016/j.egyr.2022.04.081.
  • Wu, W., Y. Cheng, X. Lin, and X. Yao. 2019. How does the implementation of the policy of electricity substitution influence green economic growth in China? Energy Policy 131:251–61. doi:10.1016/j.enpol.2019.04.043.
  • Xin-Gang, Z., and X. Yi-Min. 2019. The economic performance of industrial and commercial rooftop photovoltaic in China. Energy 187:115961. doi:10.1016/j.energy.2019.115961.
  • Xu, B., and B. Lin. 2018. Assessing the development of China’s new energy industry. Energy Economics 70:116–31. doi:10.1016/j.eneco.2018.01.001.
  • Xu, M., P. Xie, and B. C. Xie. 2020. Study of China’s optimal solar photovoltaic power development path to 2050. Resources Policy 65:101541. doi:10.1016/j.resourpol.2019.101541.
  • Yang, D., J. Liu, J. Yang, and N. Ding. 2015. Life-cycle assessment of China’s multi-crystalline silicon photovoltaic modules considering international trade. Journal of Cleaner Production 94:35–45. doi:10.1016/j.jclepro.2015.02.003.
  • Zhao, Y., Y. Cao, X. Shi, H. Li, Q. Shi, and Z. Zhang. 2020. How China’s electricity generation sector can achieve its carbon intensity reduction targets? The Science of the Total Environment 706:135689. doi:10.1016/j.scitotenv.2019.135689.
  • Zira, S., L. Rydhmer, E. Ivarsson, R. Hoffmann, and E. Röös. 2021. A life cycle sustainability assessment of organic and conventional pork supply chains in Sweden. Sustain Prod Consum 28:21–38. doi:10.1016/j.spc.2021.03.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.